Skip to main content

Advertisement

Log in

The clinical utility of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in guiding myocardial revascularisation

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Introduction

Current myocardial revascularisation guidelines recommend that patients with acute coronary syndromes be timeously revascularised. Despite these class I recommendations, immediate access to timeous revascularisation is often not achievable in low- and middle-income countries (LMIC) and remote regions in high-income countries (HIC). Many patients present late outside of the therapeutic window for guideline-recommended interventions. 2-Deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG) is a radiopharmaceutical agent used to identify cardiac regions with viable or hibernating myocardium. Viable myocytes with impaired contraction may recover their contractility with successful myocardial revascularisation. However, there are conflicting hard outcomes data on patients with hibernating myocardium who are subsequently revascularised. Whether this management strategy results in improved major adverse cardiovascular events remains uncertain.

Methods

In this narrative review, we will critically appraise the existing body of evidence on whether using 2-[18F]FDG positron emission tomography (PET) in guiding myocardial revascularisation leads to compelling clinical outcomes or not. Furthermore, we will discuss possible reasons for the lack of differences in patient outcomes.

Results

A few randomised controlled trials have challenged the concept of viability testing with 2-[18F]FDG PET. One trial demonstrated that a reduction in mortality could be observed if PET recommendations are followed.

Conclusion

The current evidence is insufficient for clinicians in LMIC or remote areas in HIC without access to catheterisation laboratories to refrain from referring patients for viability imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Dilsizian V, Narula J: imaging cardiac metabolism. Atlas of nuclear cardiology. Fourth edition. 2013

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J et al (2018) Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet 391:31–40. https://doi.org/10.1016/S0140-6736(17)32714-9

    Article  PubMed  Google Scholar 

  2. Hueb W, Lopes N, Gersh BJ, Soares PR, Ribeiro EE, Pereira AC et al (2010) Ten-year follow-up survival of the medicine, angioplasty, or surgery study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 122:949–957. https://doi.org/10.1161/CIRCULATIONAHA.109.911669

    Article  PubMed  Google Scholar 

  3. Pursnani S, Korley F, Gopaul R, Kanade P, Chandra N, Shaw RE et al (2012) Percutaneous coronary intervention versus optimal medical therapy in stable coronary artery disease: a systematic review and meta-analysis of randomized clinical trials. Circ Cardiovasc Interv 5:476–490. https://doi.org/10.1161/CIRCINTERVENTIONS.112.970954

    Article  PubMed  Google Scholar 

  4. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A et al (2011) Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 364:1607–1616. https://doi.org/10.1056/NEJMoa1100356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kunadian V, Zaman A, Qiu W (2011) Revascularization among patients with severe left ventricular dysfunction: a meta-analysis of observational studies. Eur J Heart Fail 13:773–784. https://doi.org/10.1093/eurjhf/hfr037

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nagendran J, Norris CM, Graham MM, Ross DB, Macarthur RG, Kieser TM et al (2013) Coronary revascularization for patients with severe left ventricular dysfunction. Ann Thorac Surg 96:2038–2044. https://doi.org/10.1016/j.athoracsur.2013.06.052

    Article  PubMed  Google Scholar 

  7. Velazquez EJ, Bonow RO (2015) Revascularization in severe left ventricular dysfunction. J Am Coll Cardiol 65:615–624. https://doi.org/10.1016/j.jacc.2014.10.070

    Article  PubMed  Google Scholar 

  8. Yoo JS, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW (2013) Coronary artery bypass grafting in patients with left ventricular dysfunction: predictors of long-term survival and impact of surgical strategies. Int J Cardiol 168:5316–5322. https://doi.org/10.1016/j.ijcard.2013.08.009

    Article  PubMed  Google Scholar 

  9. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158. https://doi.org/10.1016/s0735-1097(02)01726-6

    Article  PubMed  Google Scholar 

  10. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50:2002–2012. https://doi.org/10.1016/j.jacc.2007.09.006

    Article  PubMed  Google Scholar 

  11. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221. https://doi.org/10.1016/0002-8703(89)90685-6

    Article  CAS  PubMed  Google Scholar 

  12. Pagano D, Townend JN, Parums DV, Bonser RS, Camici PG (2000) Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake. Heart 83:456–461. https://doi.org/10.1136/heart.83.4.456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagueh SF, Mikati I, Weilbaecher D, Reardon MJ, Al-Zaghrini GJ, Cacela D et al (1999) Relation of the contractile reserve of hibernating myocardium to myocardial structure in humans. Circulation 100:490–496. https://doi.org/10.1161/01.cir.100.5.490

    Article  CAS  PubMed  Google Scholar 

  14. Näveri L, Näveri H, Härkönen M (1987) Myocardial energy metabolism. Ann Chir Gynaecol 76:3–11

    PubMed  Google Scholar 

  15. Di Gialleonardo V, Wilson DM, Keshari KR (2016) The potential of metabolic imaging. Semin Nucl Med 46:28–39. https://doi.org/10.1053/j.semnuclmed.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S et al (2016) ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 23:1187–1226. https://doi.org/10.1007/s12350-016-0522-3

    Article  PubMed  Google Scholar 

  17. Southworth R, Parry CR, Parkes HG, Medina RA, Garlick PB (2003) Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat. NMR Biomed 16:494–502. https://doi.org/10.1002/nbm.856

    Article  CAS  PubMed  Google Scholar 

  18. Rokka J, Gronroos TJ, Viljanen T, Solin O, Haaparanta-Solin M (2017) HPLC and TLC methods for analysis of [(18)F]FDG and its metabolites from biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 1048:140–149. https://doi.org/10.1016/j.jchromb.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  19. Mesotten L, Maes A, Herregods MC, Desmet W, Nuyts J, Van de Werf F et al (2001) PET “reversed mismatch pattern” early after acute myocardial infarction: follow-up of flow, metabolism and function. Eur J Nucl Med 28:466–471. https://doi.org/10.1007/s002590100482

    Article  CAS  PubMed  Google Scholar 

  20. Shirasaki H, Nakano A, Uzui H, Yonekura Y, Okazawa H, Ueda T et al (2006) Comparative assessment of 18F-fluorodeoxyglucose PET and 99mTc-tetrofosmin SPECT for the prediction of functional recovery in patients with reperfused acute myocardial infarction. Eur J Nucl Med Mol Imaging 33:879–886. https://doi.org/10.1007/s00259-006-0071-0

    Article  PubMed  Google Scholar 

  21. Yamagishi H, Akioka K, Hirata K, Sakanoue Y, Takeuchi K, Yoshikawa J et al (1999) A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 40:1492–1498

    CAS  PubMed  Google Scholar 

  22. Hansen AK, Gejl M, Bouchelouche K, Tolbod LP, Gormsen LC (2016) Reverse mismatch pattern in cardiac 18F-FDG viability PET/CT is not associated with poor outcome of revascularization: a retrospective outcome study of 91 patients with heart failure. Clin Nucl Med 41:e428–e435. https://doi.org/10.1097/rlu.0000000000001312

    Article  PubMed  Google Scholar 

  23. Klein LJ, Visser FC, Knaapen P, Peters JH, Teule GJ, Visser CA et al (2001) Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med 28:651–668. https://doi.org/10.1007/s002590000472

    Article  CAS  PubMed  Google Scholar 

  24. Dilsizian VNJ (2013) Atlas of nuclear cardiology, 4th edn. Springer, New York, pp 10.1007/978-1-4614-5551–6

    Book  Google Scholar 

  25. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A et al (1993) Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 22:1587–1597. https://doi.org/10.1016/0735-1097(93)90582-l

    Article  CAS  PubMed  Google Scholar 

  26. Mather KJ, DeGrado TR (2016) Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta 1861:1535–1543. https://doi.org/10.1016/j.bbalip.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  27. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP et al (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 126:e354–e471. https://doi.org/10.1161/CIR.0b013e318277d6a0

    Article  PubMed  Google Scholar 

  28. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C et al (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  29. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al (2019) 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40:87–165. https://doi.org/10.1093/eurheartj/ehy394

    Article  PubMed  Google Scholar 

  30. Di Mario C, Werner GS, Sianos G, Galassi AR, Buttner J, Dudek D et al (2007) European perspective in the recanalisation of chronic total occlusions (CTO): consensus document from the EuroCTO club. EuroIntervention 3:30–43

    Article  PubMed  Google Scholar 

  31. Menozzi M, Piovaccari G (2020) Procedures for chronic total occlusion: when are they recommended and when not. Eur Heart J Suppl 22:L114–L116. https://doi.org/10.1093/eurheartj/suaa148

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qintar M, Grantham JA, Sapontis J, Gosch KL, Lombardi W, Karmpaliotis D et al (2017) Dyspnea among patients with chronic total occlusions undergoing percutaneous coronary intervention: prevalence and predictors of improvement. Circ Cardiovasc Qual Outcomes. https://doi.org/10.1161/CIRCOUTCOMES.117.003665

    Article  PubMed  PubMed Central  Google Scholar 

  33. Werner GS, Martin-Yuste V, Hildick-Smith D, Boudou N, Sianos G, Gelev V et al (2018) A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. Eur Heart J 39:2484–2493. https://doi.org/10.1093/eurheartj/ehy220

    Article  CAS  PubMed  Google Scholar 

  34. Nashef SA, Roques F, Michel P, Gauducheau E, Lemeshow S, Salamon R (1999) European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg 16:9–13. https://doi.org/10.1016/s1010-7940(99)00134-7

    Article  CAS  PubMed  Google Scholar 

  35. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR et al (2012) EuroSCORE II. Eur J Cardiothorac Surg 41:734–744. https://doi.org/10.1093/ejcts/ezs043 (discussion 44-5)

    Article  PubMed  Google Scholar 

  36. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K et al (2005) The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1:219–227

    PubMed  Google Scholar 

  37. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B et al (2011) 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 124:e574–e651. https://doi.org/10.1161/CIR.0b013e31823ba622

    Article  PubMed  Google Scholar 

  38. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L et al (2010) 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-five substudy of the PARR 2 trial. J Nucl Med 51:567–574. https://doi.org/10.2967/jnumed.109.065938

    Article  PubMed  Google Scholar 

  39. Mc Ardle B, Shukla T, Nichol G, deKemp RA, Bernick J, Guo A et al (2016) Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.115.004331

    Article  PubMed  Google Scholar 

  40. Cleland JG, Calvert M, Freemantle N, Arrow Y, Ball SG, Bonser RS et al (2011) The heart failure revascularisation trial (HEART). Eur J Heart Fail 13:227–233. https://doi.org/10.1093/eurjhf/hfq230

    Article  PubMed  Google Scholar 

  41. Chacko L, James PH, Rajkumar C, Nowbar AN, Kane C, Mahdi D et al (2020) Effects of percutaneous coronary intervention on death and myocardial infarction stratified by stable and unstable coronary artery disease: a meta-analysis of randomized controlled trials. Circ Cardiovasc Qual Outcomes 13:e006363. https://doi.org/10.1161/CIRCOUTCOMES.119.006363

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fukuoka R, Horita Y, Namura M, Ikeda M, Terai H, Tama N et al (2013) Serial changes in glucose-loaded 18F-fluoro-2-deoxyglucose positron emission tomography, 99mTc-tetrofosmin and 123I-beta-methyl-p-iodophenyl-penta-decanoic acid myocardial single-photon emission computed tomography images in patients with anterior acute myocardial infarction. Circ J 77:137–145. https://doi.org/10.1253/circj.cj-12-0011

    Article  CAS  PubMed  Google Scholar 

  43. Fukuoka Y, Nakano A, Tama N, Hasegawa K, Ikeda H, Morishita T et al (2017) Impaired myocardial microcirculation in the flow-glucose metabolism mismatch regions in revascularized acute myocardial infarction. J Nucl Cardiol 24:1641–1650. https://doi.org/10.1007/s12350-016-0526-z

    Article  PubMed  Google Scholar 

  44. Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W et al (1996) Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction Implications for the pathophysiology of chronic myocardial hibernation. Circulation 94:651–659. https://doi.org/10.1161/01.cir.94.4.651

    Article  CAS  PubMed  Google Scholar 

  45. Koch KC, vom Dahl J, Wenderdel M, Nowak B, Schaefer WM, Sasse A et al (2001) Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J Am Coll Cardiol 38:91–98. https://doi.org/10.1016/s0735-1097(01)01314-6

    Article  CAS  PubMed  Google Scholar 

  46. Kunze KP, Dirschinger RJ, Kossmann H, Hanus F, Ibrahim T, Laugwitz KL et al (2018) Quantitative cardiovascular magnetic resonance: extracellular volume, native T1 and 18F-FDG PET/CMR imaging in patients after revascularized myocardial infarction and association with markers of myocardial damage and systemic inflammation. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-018-0454-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tarakji KG, Brunken R, McCarthy PM, Al-Chekakie MO, Abdel-Latif A, Pothier CE et al (2006) Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 113:230–237. https://doi.org/10.1161/circulationaha.105.541664

    Article  PubMed  Google Scholar 

  48. Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S et al (2013) The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging 29:1645–1653. https://doi.org/10.1007/s10554-013-0254-2

    Article  PubMed  Google Scholar 

  49. Wang W, Li X, Tian C, Zhao S, Hacker M, Zhang X (2018) Cardiac death in patients with left ventricular aneurysm, remodeling and myocardial viability by gated (99m)Tc-MIBI SPECT and gated (18)F-FDG PET. Int J Cardiovasc Imaging 34:485–493. https://doi.org/10.1007/s10554-017-1234-8

    Article  PubMed  Google Scholar 

  50. Zhang X, Liu XJ, Hu S, Schindler TH, Tian Y, He ZX et al (2008) Long-term survival of patients with viable and nonviable aneurysms assessed by 99mTc-MIBI SPECT and18F-FDG PET: a comparative study of medical and surgical treatment. J Nucl Med 49:1288–1298. https://doi.org/10.2967/jnumed.107.046730

    Article  PubMed  Google Scholar 

  51. Gaudino M, Antoniades C, Benedetto U, Deb S, Di Franco A, Di Giammarco G et al (2017) Mechanisms, consequences, and prevention of coronary graft failure. Circulation 136:1749–1764. https://doi.org/10.1161/CIRCULATIONAHA.117.027597

    Article  PubMed  Google Scholar 

  52. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5065 grafts related to survival and reoperation in 1388 patients during 25 years. J Am Coll Cardiol 28:616–626. https://doi.org/10.1016/0735-1097(96)00206-9

    Article  CAS  PubMed  Google Scholar 

  53. Halabi AR, Alexander JH, Shaw LK, Lorenz TJ, Liao L, Kong DF et al (2005) Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. Am J Cardiol 96:1254–1259. https://doi.org/10.1016/j.amjcard.2005.06.067

    Article  PubMed  Google Scholar 

  54. Shavadia J, Norris CM, Graham MM, Verma S, Ali I, Bainey KR (2015) Symptomatic graft failure and impact on clinical outcome after coronary artery bypass grafting surgery: results from the Alberta provincial project for outcome assessment in coronary heart disease registry. Am Heart J 169:833–840. https://doi.org/10.1016/j.ahj.2015.02.022

    Article  PubMed  Google Scholar 

  55. Kristensen SL, Galloe AM, Thuesen L, Kelbaek H, Thayssen P, Havndrup O et al (2014) Stent thrombosis is the primary cause of ST-segment elevation myocardial infarction following coronary stent implantation: a five year follow-up of the SORT OUT II study. PLoS ONE 9:e113399. https://doi.org/10.1371/journal.pone.0113399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pfisterer M, Brunner-La Rocca HP, Buser PT, Rickenbacher P, Hunziker P, Mueller C et al (2006) Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol 48:2584–2591. https://doi.org/10.1016/j.jacc.2006.10.026

    Article  CAS  PubMed  Google Scholar 

  57. Bax JJ, Visser FC, van Lingen A, Cornel JH, Fioretti PM, van der Wall EE (1997) Metabolic imaging using F18-fluorodeoxyglucose to assess myocardial viability. Int J Card Imaging 13:145–155. https://doi.org/10.1023/a:1005744810876 (discussion 57–60)

    Article  CAS  PubMed  Google Scholar 

  58. Boehm J, Haas F, Bauernschmitt R, Wagenpfeil S, Voss B, Schwaiger M et al (2010) Impact of preoperative positron emission tomography in patients with severely impaired LV-function undergoing surgical revascularization. Int J Cardiovasc Imaging 26:423–432. https://doi.org/10.1007/s10554-010-9585-4

    Article  PubMed  PubMed Central  Google Scholar 

  59. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H et al (1997) Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 30:1693–1700. https://doi.org/10.1016/s0735-1097(97)00375-6

    Article  CAS  PubMed  Google Scholar 

  60. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, Von Schulthess GK et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108:1095–1100. https://doi.org/10.1161/01.CIR.0000085993.93936.BA

    Article  PubMed  Google Scholar 

  61. Santana CA, Faber TL, Soler-Peter M, Sanyal R, Esteves FP, Ornelas M et al (2008) Prognostic performance of quantitative PET tools for stratification of patients with ischemic cardiomyopathy undergoing myocardial viability assessment. Nucl Med Commun 29:970–981. https://doi.org/10.1097/MNM.0b013e3283073b60

    Article  PubMed  Google Scholar 

  62. Santana CA, Shaw LJ, Garcia EV, Soler-Peter M, Candell-Riera J, Grossman GB et al (2004) Incremental prognostic value of left ventricular function by myocardial ECG-gated FDG PET imaging in patients with ischemic cardiomyopathy. J Nucl Cardiol 11:542–550. https://doi.org/10.1016/j.nuclcard.2004.07.005

    Article  PubMed  Google Scholar 

  63. Bax JJ, Fath-Ordoubadi F, Boersma E, Wijns W, Camici PG (2002) Accuracy of PET in predicting functional recovery after revascularisation in patients with chronic ischaemic dysfunction: head-to-head comparison between blood flow, glucose utilisation and water-perfusable tissue fraction. Eur J Nucl Med Mol Imaging 29:721–727. https://doi.org/10.1007/s00259-002-0793-6

    Article  CAS  PubMed  Google Scholar 

  64. Bax JJ, Schinkel AF, Boersma E, Elhendy A, Rizzello V, Maat A et al (2004) Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation 110:II18-22. https://doi.org/10.1161/01.CIR.0000138195.33452.b0

    Article  PubMed  Google Scholar 

  65. Hausmann H, Siniawski H, Meyer R, Amthauer H, Gutberlet M, Felix R et al (2002) Coronary artery bypass grafting in patients with highly impaired ventricular function long-term outcome. Dtsch Med Wochenschr 127:2503–2507. https://doi.org/10.1055/s-2002-35643

    Article  CAS  PubMed  Google Scholar 

  66. Hernandez-Pampaloni M, Peral V, Carreras JL, Sanchez-Harguindey L, Vilacosta I (2003) Biphasic response to dobutamine predicts improvement of left ventricular dysfunction after revascularization: correlation with positron emission and rest-redistribution 201Tl tomographies. Int J Cardiovasc Imaging 19:519–528. https://doi.org/10.1023/B:CAIM.0000004302.68305.80

    Article  CAS  PubMed  Google Scholar 

  67. Konstam MA, Udelson JE, Anand IS, Cohn JN (2003) Ventricular remodeling in heart failure: a credible surrogate endpoint. J Card Fail 9:350–353. https://doi.org/10.1054/j.cardfail.2003.09.001

    Article  PubMed  Google Scholar 

  68. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S et al (2017) Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol 24:86–99. https://doi.org/10.1007/s12350-016-0502-7

    Article  PubMed  Google Scholar 

  69. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410. https://doi.org/10.1016/j.cpcardiol.2007.04.001

    Article  PubMed  Google Scholar 

  70. Romero J, Xue X, Gonzalez W, Garcia MJ (2012) CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging 5:494–508. https://doi.org/10.1016/j.jcmg.2012.02.009

    Article  PubMed  Google Scholar 

  71. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ (2016) ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol 23:606–639. https://doi.org/10.1007/s12350-015-0387-x

    Article  PubMed  Google Scholar 

  72. Cwajg JM, Cwajg E, Nagueh SF, He ZX, Qureshi U, Olmos LI et al (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1–201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161. https://doi.org/10.1016/s0735-1097(00)00525-8

    Article  CAS  PubMed  Google Scholar 

  73. Rasmussen S, Corya BC, Feigenbaum H, Knoebel SB (1978) Detection of myocardial scar tissue by M-mode echocardiography. Circulation 57:230–237. https://doi.org/10.1161/01.cir.57.2.230

    Article  CAS  PubMed  Google Scholar 

  74. Shah DJ, Kim HW, James O, Parker M, Wu E, Bonow RO et al (2013) Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA 309:909–918. https://doi.org/10.1001/jama.2013.1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR et al (2020) Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr 33:1–41. https://doi.org/10.1016/j.echo.2019.07.001

    Article  PubMed  Google Scholar 

  76. Roes SD, Mollema SA, Lamb HJ, van der Wall EE, de Roos A, Bax JJ (2009) Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol 104:312–317. https://doi.org/10.1016/j.amjcard.2009.03.040

    Article  PubMed  Google Scholar 

  77. Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218:703–710. https://doi.org/10.1148/radiology.218.3.r01fe18703

    Article  CAS  PubMed  Google Scholar 

  78. Mahrholdt H, Wagner A, Judd RM, Sechtem U (2002) Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J 23:602–619. https://doi.org/10.1053/euhj.2001.3038

    Article  CAS  PubMed  Google Scholar 

  79. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903. https://doi.org/10.1016/j.jacc.2010.11.013

    Article  PubMed  Google Scholar 

  80. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453. https://doi.org/10.1056/NEJM200011163432003

    Article  CAS  PubMed  Google Scholar 

  81. Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart DP et al (2004) Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–1541. https://doi.org/10.1161/01.CIR.0000142045.22628.74

    Article  PubMed  Google Scholar 

  82. Jimenez Juan L, Crean AM, Wintersperger BJ (2015) Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol Clin North Am 53:397–411. https://doi.org/10.1016/j.rcl.2014.11.004

    Article  PubMed  Google Scholar 

  83. Mathur M, Jones JR, Weinreb JC (2020) Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics 40:153–162. https://doi.org/10.1148/rg.2020190110

    Article  PubMed  Google Scholar 

  84. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404. https://doi.org/10.1161/CIRCULATIONAHA.105.521450

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rischpler C, Nekolla SG, Heusch G, Umutlu L, Rassaf T, Heusch P et al (2019) Cardiac PET/MRI—an update. Eur J Hybrid Imaging 3:2–17. https://doi.org/10.1186/s41824-018-0050-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rischpler C, Siebermair J, Kessler L, Quick HH, Umutlu L, Rassaf T et al (2020) Cardiac PET/MRI: current clinical status and future perspectives. Semin Nucl Med 50:260–269. https://doi.org/10.1053/j.semnuclmed.2020.02.012

    Article  PubMed  Google Scholar 

  87. Beitzke D, Rasul S, Lassen ML, Pichler V, Senn D, Stelzmuller ME et al (2020) Assessment of myocardial viability in ischemic heart disease by PET/MRI: comparison of left ventricular perfusion, hibernation, and scar burden. Acad Radiol 27:188–197. https://doi.org/10.1016/j.acra.2019.03.021

    Article  PubMed  Google Scholar 

  88. Priamo J, Adamopoulos D, Rager O, Frei A, Noble S, Carballo D et al (2017) Downstream indication to revascularization following hybrid cardiac PET/MRI: preliminary results. Nucl Med Commun 38:515–522. https://doi.org/10.1097/MNM.0000000000000680

    Article  PubMed  Google Scholar 

  89. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J et al (2015) PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging 16:661–669. https://doi.org/10.1093/ehjci/jeu317

    Article  PubMed  Google Scholar 

  90. Afaq A, Faul D, Chebrolu VV, Wan S, Hope TA, Haibach PV et al (2021) Pitfalls on PET/MRI. Semin Nucl Med. https://doi.org/10.1053/j.semnuclmed.2021.04.003

    Article  PubMed  Google Scholar 

  91. Nensa F, Bamberg F, Rischpler C, Menezes L, Poeppel TD, la Fougere C et al (2018) Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol 28:4086–4101. https://doi.org/10.1007/s00330-017-5008-4

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochimica et Biophysica Acta (BBA)-Bioenerg 1757:1406–1420. https://doi.org/10.1016/j.bbabio.2006.05.007

    Article  CAS  Google Scholar 

  93. Maddahi J, Lazewatsky J, Udelson JE, Berman DS, Beanlands RSB, Heller GV et al (2020) Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease. J Am Coll Cardiol 76:391–401. https://doi.org/10.1016/j.jacc.2020.05.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figures in this manuscript were created using Biorender.com.

Funding

The authors did not receive support from any organisation for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

NT contributed to the conception, design and pertinent insights into the controversies relating to the clinical applications of the subject matter. Furthermore, NT critically reviewed and approved the final manuscript. The manuscript was drafted by DM, and DM, SM, AA and BC reviewed the literature and participated in the critical revision of the article for important intellectual content. DM, NT, MS, SM, AA, and BC all read and approved the final version to be published.

Corresponding author

Correspondence to Dineo Mpanya.

Ethics declarations

Conflict of interest

NT has received consultation fees from Novartis Pharmaceuticals, Novo Nordisk, Boston Scientific, Pfizer, Servier, Phillips, Takeda, AstraZeneca, Acino Health Care Group and Merck. He has also received educational and travel grants from Medtronic, Biotronik, Boston Scientific and Vertice Health Care Group.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mpanya, D., Ayeni, A., More, S. et al. The clinical utility of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in guiding myocardial revascularisation. Clin Transl Imaging 10, 9–22 (2022). https://doi.org/10.1007/s40336-021-00454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00454-9

Keywords

Navigation