Skip to main content

Hybrid PET-CT Evaluation of Myocardial Viability

  • Chapter
  • First Online:
Hybrid Cardiac Imaging

Abstract

In patients with ischemic cardiomyopathy, the likelihood of recovery of left ventricular function after coronary revascularization depends on the presence and extent of myocardial viability. Evaluation of myocardial glucose metabolism by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a commonly used method for the assessment of myocardial viability. Preserved glucose metabolism indicates the presence of viable myocardium even in segments with reduced resting perfusion (perfusion-metabolism mismatch). Viability assessment by FDG PET has particularly high sensitivity for prediction of functional recovery after revascularization. Evidence from observational/retrospective data demonstrated that in ischemic cardiomyopathy patients with myocardial viability detected by PET, revascularization was associated with reduced mortality rates, compared with medical treatment, whereas in those without viability, mortality rates were not significantly different by treatment modality. Limited evidence from randomized data suggests that PET-guided management, versus standard care, was associated with reduction of composite adverse outcome only in the subgroup of patients who adhered to PET recommendations. This article summarizes the principles and methodological aspects as well as clinical data on the value of FDG PET in evaluation of myocardial viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gheorghiade M, Sopko G, De LL, Velazquez EJ, Parker JD, Binkley PF, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006;114:1202–13.

    Article  PubMed  Google Scholar 

  2. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med. 1998;339:173–81.

    Article  CAS  PubMed  Google Scholar 

  3. Shivalkar B, Maes A, Borgers M, et al. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation. 1996;94:308–15.

    Article  CAS  PubMed  Google Scholar 

  4. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  5. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211.

    Article  CAS  PubMed  Google Scholar 

  6. Bax J, Wahba FF, Van der Wall EE. Myocardial viability/hibernation. In: Iskandrian AE, Verani MS, editors. Nuclear cardiac imaging. New York, NY: Oxford University Press; 2003.

    Google Scholar 

  7. Bolukoglu H, Liedtke JA, Nellis SH, et al. An animal model of chronic coronary stenosis resulting in hibernating myocardium. Am J Phys. 1992;263:H20.

    CAS  Google Scholar 

  8. Vanoverschelde JLJ, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993;87:1513.

    Article  CAS  PubMed  Google Scholar 

  9. Slart RH, Agool A, van Veldhuisen DJ, Dierckx RA, Bax JJ. Nitrate administration increases blood flow in dysfunctional but viable myocardium, leading to improved assessment of myocardial viability: a PET study. J Nucl Med. 2006;47(8):1307–11.

    CAS  PubMed  Google Scholar 

  10. Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44:333–43.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging. 2002;29:1257–66.

    Article  PubMed  Google Scholar 

  12. Vom Dahl J, Eitzman DT, Al-Aouar ZR, et al. Relation of regional function, perfusion and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994;90:2356–66.

    Article  CAS  PubMed  Google Scholar 

  13. Vom Dahl J, Altehoefer C, Sheehan FH, et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol. 1996;28:948–58.

    Article  CAS  PubMed  Google Scholar 

  14. Camici P, Ferrannini E, Opie L. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32:217–38.

    Article  CAS  PubMed  Google Scholar 

  15. Young LH, Coven DL, Russell RR 3rd. Cellular and molecular regulation of cardiac glucose transport. J Nucl Cardiol. 2000;7(3):267–76.

    Article  CAS  PubMed  Google Scholar 

  16. Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, Selwyn AP, Jones T, Maseri A. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation. 1986;74(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gropler RJ, Siegel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, Geltman EM. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med. 1990;31:1749–56.

    CAS  PubMed  Google Scholar 

  18. Berry J, Baker J, Pieper K, Hanson M, Hoffman J, Coleman R. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med. 1991;32:1518–25.

    CAS  PubMed  Google Scholar 

  19. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992;33:1255–62.

    CAS  PubMed  Google Scholar 

  20. Lewis P, Nunan T, Dynes A, Maisey M. The use of low-dose intravenous insulin in clinical myocardial F-18 FDG PET scanning. Clin Nucl Med. 1996;21:15–8.

    Article  CAS  PubMed  Google Scholar 

  21. Schöder H, Campisi R, Ohtake T, Hoh CK, Moon DH, Czernin J, Schelbert HR. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol. 1999;33(5):1328–37.

    Article  PubMed  Google Scholar 

  22. Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH, Visser CA. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med. 1997;24(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  23. Schroder O, Hör G, Hertel A, Baum RP. Combined hyperinsulinemic glucose clamp and oral Acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun. 1998;19:867–74.

    Article  CAS  PubMed  Google Scholar 

  24. Knuuti MJ, Yki-Järvinen H, Voipio-Pulkki L-M, et al. Enhancement of myocardial 18-FDG uptake by nicotinic acid derivative. J Nucl Med. 1994;35:989–98.

    CAS  PubMed  Google Scholar 

  25. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):147–86.

    Article  CAS  PubMed  Google Scholar 

  26. Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Irwan R, Sluiter WJ, Dierckx RA, de Boer J, Jager PL. Prediction of functional recovery after revascularization in patients with chronic ischaemic left ventricular dysfunction: head-to-head comparison between 99mTc-sestamibi/18F-FDG DISA SPECT and 13N-ammonia/18F-FDG PET. Eur J Nucl Med Mol Imaging. 2006;33(6):716–23.

    Article  PubMed  Google Scholar 

  27. Nowak B, Schaefer WM, Koch KC, Kaiser HJ, Block S, Knackstedt C, Zimny M, Vom Dahl J, Buell U. Assessment of myocardial viability in dysfunctional myocardium by resting myocardial blood flow determined with oxygen 15 water PET. J Nucl Cardiol. 2003;10(1):34–45.

    Article  PubMed  Google Scholar 

  28. Schmidt M, Voth E, Schneider CA, Theissen P, Wagner R, Baer FM, Schicha H. F-18-FDG uptake is a reliable predictory of functional recovery of akinetic but viable infarct regions as defined by magnetic resonance imaging before and after revascularization. Magn Reson Imaging. 2004;22(2):229–36.

    Article  PubMed  Google Scholar 

  29. Kühl HP, Lipke CS, Krombach GA, Katoh M, Battenberg TF, Nowak B, Heussen N, Buecker A, Schaefer WM. Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: comparison of contrast-enhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J. 2006;27(7):846–53.

    Article  PubMed  Google Scholar 

  30. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    Article  PubMed  Google Scholar 

  31. Di Carli MF, Hachamovitch R, Berman DS. The art and science of predicting postrevascularization improvement in left ventricular (LV) function in patients with severely depressed LV function. J Am Coll Cardiol. 2002;40:1744–7.

    Article  PubMed  Google Scholar 

  32. Di Carli MF. The quest for myocardial viability: is there a role for nitrate-enhanced imaging? J Nucl Cardiol. 2003;10(6):696–9.

    Article  PubMed  Google Scholar 

  33. Beanlands RS, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, Nahmias C, Hendry P, Burns RJ, Lamy A, Mickleborough L, Kostuk W, Fallen E, Nichol G, PARR Investigators. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40(10):1735–43.

    Article  PubMed  Google Scholar 

  34. Zhang X, Liu XJ, Hu S, Schindler TH, Tian Y, He ZX, Gao R, Wu Q, Wei H, Sayre JW, Schelbert HR. Long-term survival of patients with viable and nonviable aneurysms assessed by 99mTc-MIBI SPECT and 18F-FDG PET: a comparative study of medical and surgical treatment. J Nucl Med. 2008;49(8):1288–98.

    Article  PubMed  Google Scholar 

  35. Wang W, Li X, Tian C, Zhao S, Hacker M, Zhang X. Cardiac death in patients with left ventricular aneurysm, remodeling and myocardial viability by gated 99mTc-MIBI SPECT and gated 18F-FDG PET. Int J Cardiovasc Imaging. 2018;34(3):485–93.

    Article  PubMed  Google Scholar 

  36. Bax JJ, Delgado V. Myocardial viability as integral part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol. 2015;22:229–45.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, Gulenchyn KY, Garrard L, Dekemp R, Guo A, Ruddy TD, Benard F, Lamy A, Iwanochko RM. F-18-Fluorodeoxyglucose positron emission tomography imaging assisted management of patients with severe left ventricular dysfunction and suspected coronary disease a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  39. Mc Ardle B, Shukla T, Nichol G, deKemp RA, Bernick J, Guo A, et al. Long-term follow-up of outcomes with f-18-fluorodeoxyglucose positron emission tomography imaging assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. 2016;9:e004331.

    Article  PubMed  Google Scholar 

  40. D’Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R, Ruddy TD, DaSilva J, Humen D, Gulenchyn KY, Freeman M, Racine N, Benard F, Hendry P, Beanlands RS, PARR-2 Investigators. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2(9):1060–8.

    Article  PubMed  Google Scholar 

  41. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC, Cerqueira MD, Hachamovitch R. Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging. 2013;6:363–72.

    Article  PubMed  Google Scholar 

  42. Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S, Haug A, Bartenstein P, Cumming P, Van Kriekinge SD, Slomka PJ, Hacker M. The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging. 2013;29(7):1645–53.

    Article  PubMed  Google Scholar 

  43. Ponikowski P, Voors AA, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2129–200.

    Article  PubMed  Google Scholar 

  44. Kajander S, Ukkonen H, Sipilä H, Teräs M, Knuuti J. Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Funct Imaging. 2009;29:81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomassen A, Petersen H, Johansen A, Braad PE, Diederichsen AC, Mickley H, Jensen LO, Gerke O, Simonsen JA, Thayssen P, Høilund-Carlsen PF. Quantitative myocardial perfusion by O-15-water PET: individualized vs. standardized vascular territories. Eur Heart J Cardiovasc Imaging. 2015;16(9):970–6.

    PubMed  Google Scholar 

  46. Schroeder S, Achenbach S, Bengel F, Burgstahler C, Cademartiri F, de Feyter P, George R, Kaufmann P, Kopp AF, Knuuti J, Ropers D, Schuijf J, Tops LF, Bax JJ, Working Group Nuclear Cardiology and Cardiac CT, European Society of Cardiology, European Council of Nuclear Cardiology. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J. 2008;29:531–56.

    Article  PubMed  Google Scholar 

  47. Brodoefel H, Reimann A, Klumpp B, Fenchel M, Ohmer M, Miller S, Schroeder S, Claussen C, Scheule A, Kopp AF. Assessment of myocardial viability in a reperfused porcine model: evaluation of different MSCT contrast protocols in acute and subacute infarct stages in comparison with MRI. J Comput Assist Tomogr. 2007;31:290–8.

    Article  PubMed  Google Scholar 

  48. Brodoefel H, Klumpp B, Reimann A, Fenchel M, Heuschmid M, Miller S, Schroeder S, Claussen C, Scheule AM, Kopp AF. Sixty-four-MSCT in the characterization of porcine acute and subacute myocardial infarction: determination of transmurality in comparison to magnetic resonance imaging and histopathology. Eur J Radiol. 2007;62:235–46.

    Article  CAS  PubMed  Google Scholar 

  49. Holz A, Lautamäki R, Sasano T, Merrill J, Nekolla SG, Lardo AC, Bengel FM. Expanding the versatility of cardiac PET/CT: feasibility of delayed contrast enhancement CT for infarct detection in a porcine model. J Nucl Med. 2009;50(2):259–65.

    Article  PubMed  Google Scholar 

  50. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde JL. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation. 2006;113:823–33.

    Article  PubMed  Google Scholar 

  51. Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Gunther RW, Kuhl HP. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005;45:2042–7.

    Article  PubMed  Google Scholar 

  52. Lee IH, Choe YH, Lee KH, Jeon ES, Choi JH. Comparison of multidetector CT with F-18-FDG-PET and SPECT in the assessment of myocardial viability in patients with myocardial infarction: a preliminary study. Eur J Radiol. 2009;72:401–5.

    Article  PubMed  Google Scholar 

  53. Lautamäki R, Schuleri KH, Sasano T, Javadi MS, Youssef A, Merrill J, Nekolla SG, Abraham MR, Lardo AC, Bengel FM. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: evaluation in a porcine model of myocardial infarction. Circ Cardiovasc Imaging. 2009;2:299–305.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Saraste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nammas, W., Saraste, A. (2022). Hybrid PET-CT Evaluation of Myocardial Viability. In: Nekolla, S.G., Rischpler, C. (eds) Hybrid Cardiac Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-83167-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83167-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83166-0

  • Online ISBN: 978-3-030-83167-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics