Skip to main content
Log in

Hypoxia PET imaging techniques: data acquisition and analysis

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Introduction

Hypoxia is associated with poor treatment outcome in several tumor entities. Positron emission tomography (PET) offers the possibility to visualize tumor hypoxia in a spatially resolved manner using dedicated hypoxia PET tracers. The aim of this article is to review different tracers, PET acquisition methods and data analysis strategies that have been used in previous studies.

Methods

A literature research has been performed in the database PubMed using the keywords “FMISO”, “FAZA”, “HX4”, “EF3/5” or “Cu-ATSM” in combination with “hypoxia”, “PET”, and “radiotherapy” in order to review the current status of hypoxia PET acquisition and data analysis strategies.

Results

A total of 141 articles were identified during the literature search. However, after exclusion of preclinical or simulation studies, 51 remained. Hypoxia PET imaging using different PET tracers was shown to have prognostic power in order to stratify patients according to outcome after chemoradiotherapy. However, most studies present small patient groups and use a variety of different PET acquisition protocols and data analysis strategies. Hypoxia PET acquisition can be performed using either static or dynamic PET acquisition. Due to the slow diffusive transport of the tracer, image acquisition needs to be performed several (2–4) h post-injection. Motivated by the low intrinsic contrast of hypoxia PET imaging, most studies use tumor-to-muscle ratios (TMR) to define areas of tumor hypoxia from static PET images, whereas dynamic scans are quantitatively analyzed using kinetic modeling.

Conclusion

Data acquisition and analysis for hypoxia PET imaging requires standardization and harmonization, in order to empower large multicenter trials in the future, which are needed to proof the clinical benefit of personalized treatments on the basis of hypoxia PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41(1):31–39

    Article  CAS  PubMed  Google Scholar 

  2. Pignon JP, le Maitre A, Maillard E, Bourhis J, Group M-NC (2009) Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 92(1):4–14

    Article  PubMed  Google Scholar 

  3. Budach V, Stuschke M, Budach W, Baumann M, Geismar D, Grabenbauer G et al (2005) Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 23(6):1125–1135

    Article  CAS  PubMed  Google Scholar 

  4. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9(12):674–687

    Article  CAS  PubMed  Google Scholar 

  5. Welz S, Monnich D, Pfannenberg C, Nikolaou K, Reimold M, La Fougere C, et al. (2017) Prognostic value of dynamic hypoxia PET in head and neck cancer: results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiother Oncol. doi:10.1016/j.radonc.2017.04.004

  6. Thorwarth D, Eschmann SM, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300

    Article  PubMed  Google Scholar 

  7. Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, Haase R et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105(1):21–28

    Article  PubMed  Google Scholar 

  8. Mortensen LS, Johansen J, Kallehauge J, Primdahl H, Busk M, Lassen P et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20

    Article  PubMed  Google Scholar 

  9. Zegers CM, van Elmpt W, Reymen B, Even AJ, Troost EG, Ollers MC et al (2014) In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F]HX4 and [18F]FDG-PET/CT imaging. Clin Cancer Res 20(24):6389–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Challapalli A, Carroll L, Aboagye EO (2017) Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging 5(3):225–253

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49(2):201–205

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Lee NY, Georgi JC, Narayanan M, Guillem J, Schoder H et al (2010) Pharmacokinetic analysis of hypoxia (18)F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med 51(1):37–45

    Article  PubMed  Google Scholar 

  13. Vera P, Thureau S, Chaumet-Riffaud P, Modzelewski R, Bohn P, Vermandel M et al (2017) Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by 18F-Misonidazole PET/CT in patients with non-small cell lung carcinoma (RTEP5 Study). J Nucl Med 58(7):1045–1053

    Article  PubMed  Google Scholar 

  14. Graves EE, Hicks RJ, Binns D, Bressel M, Le QT, Peters L et al (2016) Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. Eur J Nucl Med Mol Imaging 43(4):617–625

    Article  CAS  PubMed  Google Scholar 

  15. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24(13):2098–2104

    Article  PubMed  Google Scholar 

  16. Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12(18):5435–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eschmann SM, Paulsen F, Bedeshem C, Machulla HJ, Hehr T, Bamberg M et al (2007) Hypoxia-imaging with (18)F-Misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol 83(3):406–410

    Article  CAS  PubMed  Google Scholar 

  18. Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA et al (2013) Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol 108(3):511–516

    Article  PubMed  Google Scholar 

  19. Okamoto S, Shiga T, Yasuda K, Watanabe S, Hirata K, Nishijima KI et al (2016) The reoxygenation of hypoxia and the reduction of glucose metabolism in head and neck cancer by fractionated radiotherapy with intensity-modulated radiation therapy. Eur J Nucl Med Mol Imaging 43(12):2147–2154

    Article  CAS  PubMed  Google Scholar 

  20. Servagi-Vernat S, Differding S, Hanin FX, Labar D, Bol A, Lee JA et al (2014) A prospective clinical study of (1)(8)F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita T, Fujii H, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H (2016) Prognostic significance of hypoxic PET using (18)F-FAZA and (62)Cu-ATSM in non-small-cell lung cancer. Lung Cancer 91:56–66

    Article  PubMed  Google Scholar 

  22. Zegers CM, Hoebers FJ, van Elmpt W, Bons JA, Ollers MC, Troost EG et al (2016) Evaluation of tumour hypoxia during radiotherapy using [18F]HX4 PET imaging and blood biomarkers in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 43(12):2139–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahy P, Geets X, Lonneux M, Leveque P, Christian N, De Bast M et al (2008) Determination of tumour hypoxia with [18F]EF3 in patients with head and neck tumours: a phase I study to assess the tracer pharmacokinetics, biodistribution and metabolism. Eur J Nucl Med Mol Imaging 35(7):1282–1289

    Article  CAS  PubMed  Google Scholar 

  24. Komar G, Lehtio K, Seppanen M, Eskola O, Levola H, Lindholm P et al (2014) Prognostic value of tumour blood flow, [(1)(8)F]EF5 and [(1)(8)F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy. Eur J Nucl Med Mol Imaging 41(11):2042–2050

    Article  CAS  PubMed  Google Scholar 

  25. Minagawa Y, Shizukuishi K, Koike I, Horiuchi C, Watanuki K, Hata M et al (2011) Assessment of tumor hypoxia by 62Cu-ATSM PET/CT as a predictor of response in head and neck cancer: a pilot study. Ann Nucl Med 25(5):339–345

    Article  PubMed  Google Scholar 

  26. Suh YE, Lawler K, Henley-Smith R, Pike L, Leek R, Barrington S et al (2017) Association between hypoxic volume and underlying hypoxia-induced gene expression in oropharyngeal squamous cell carcinoma. Br J Cancer 116(8):1057–1064

    Article  CAS  PubMed  Google Scholar 

  27. Wack LJ, Monnich D, van Elmpt W, Zegers CM, Troost EG, Zips D et al (2015) Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia—a simulation study. Acta Oncol 54(9):1370–1377

    Article  CAS  PubMed  Google Scholar 

  28. Pruijn FB, Sturman JR, Liyanage HD, Hicks KO, Hay MP, Wilson WR (2005) Extravascular transport of drugs in tumor tissue: effect of lipophilicity on diffusion of tirapazamine analogues in multicellular layer cultures. J Med Chem 48(4):1079–1087

    Article  CAS  PubMed  Google Scholar 

  29. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A et al (2003) [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30(3):317–326

    Article  CAS  PubMed  Google Scholar 

  30. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113

    PubMed  Google Scholar 

  31. Biskupiak JE, Grierson JR, Rasey JS, Martin GV, Krohn KA (1991) Synthesis of an (iodovinyl)misonidazole derivative for hypoxia imaging. J Med Chem 34(7):2165–2168

    Article  CAS  PubMed  Google Scholar 

  32. Brown JM, Workman P (1980) Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res 82(1):171–190

    Article  CAS  PubMed  Google Scholar 

  33. Dubois LJ, Lieuwes NG, Janssen MH, Peeters WJ, Windhorst AD, Walsh JC et al (2011) Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci USA 108(35):14620–14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zegers CM, van Elmpt W, Wierts R, Reymen B, Sharifi H, Ollers MC et al (2013) Hypoxia imaging with [(1)(8)F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 109(1):58–64

    Article  PubMed  Google Scholar 

  35. Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts SA (2014) A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med 55(3):515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peeters SG, Zegers CM, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GA et al (2015) A comparative study of the hypoxia PET tracers [(1)(8)F]HX4, [(1)(8)F]FAZA, and [(1)(8)F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys 91(2):351–359

    Article  CAS  PubMed  Google Scholar 

  37. Colombie M, Gouard S, Frindel M, Vidal A, Cherel M, Kraeber-Bodere F et al (2015) Focus on the controversial aspects of (64)Cu-ATSM in tumoral hypoxia mapping by PET imaging. Front Med (Lausanne) 2:58

    Google Scholar 

  38. Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ et al (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15(6):499–504

    Article  CAS  PubMed  Google Scholar 

  39. Dence CS, Ponde DE, Welch MJ, Lewis JS (2008) Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer. Nucl Med Biol 35(6):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Donoghue JA, Zanzonico P, Pugachev A, Wen B, Smith-Jones P, Cai S et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61(5):1493–1502

    Article  PubMed  Google Scholar 

  41. Li F, Jorgensen JT, Forman J, Hansen AE, Kjaer A (2016) 64Cu-ATSM reflects po2 levels in human head and neck cancer xenografts but not in colorectal cancer xenografts: comparison with 64CuCl2. J Nucl Med 57(3):437–443

    Article  CAS  PubMed  Google Scholar 

  42. Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI et al (2015) Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol 117(1):113–117

    Article  PubMed  Google Scholar 

  43. Lee N, Schoder H, Beattie B, Lanning R, Riaz N, McBride S et al (2016) Strategy of using intratreatment hypoxia imaging to selectively and safely guide radiation dose de-escalation concurrent with chemotherapy for locoregionally advanced human papillomavirus-related oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 96(1):9–17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee N, Nehmeh S, Schoder H, Fury M, Chan K, Ling CC et al (2009) Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75(1):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grkovski M, Lee NY, Schoder H, Carlin SD, Beattie BJ, Riaz N, et al. (2017) Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer. Eur J Nucl Med Mol Imaging 44(10):1682–1691

  46. Schweifer A, Maier F, Ehrlichmann W, Lamparter D, Kneilling M, Pichler BJ et al (2016) [18F]Fluoro-azomycin-2-deoxy-beta-d-ribofuranoside—a new imaging agent for tumor hypoxia in comparison with [18F]FAZA. Nucl Med Biol 43(12):759–769

    Article  CAS  PubMed  Google Scholar 

  47. Abolmaali N, Haase R, Koch A, Zips D, Steinbach J, Baumann M et al (2011) Two or four hour [(1)(8)F]FMISO-PET in HNSCC. When is the contrast best? Nukl 50(1):22–27

    Article  CAS  Google Scholar 

  48. Carlin S, Humm JL (2012) PET of hypoxia: current and future perspectives. J Nucl Med 53(8):1171–1174

    Article  CAS  PubMed  Google Scholar 

  49. Grkovski M, Schwartz J, Gonen M, Schoder H, Lee NY, Carlin SD et al (2016) Feasibility of 18F-fluoromisonidazole kinetic modeling in head and neck cancer using shortened acquisition times. J Nucl Med 57(3):334–341

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz J, Grkovski M, Rimner A, Schoder H, Zanzonico PB, Carlin SD et al (2017) Pharmacokinetic analysis of dynamic 18F-fluoromisonidazole PET data in non-small cell lung cancer. J Nucl Med 58(6):911–919

    Article  PubMed  Google Scholar 

  51. McGowan DR, Macpherson RE, Hackett SL, Liu D, Gleeson FV, McKenna WG, et al. (2017) 18 F-fluoromisonidazole uptake in advanced stage non-small cell lung cancer: a voxel-by-voxel PET kinetics study. Med Phys

  52. Thorwarth D, Eschmann SM, Paulsen F, Alber M (2005) A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol 50(10):2209–2224

    Article  PubMed  Google Scholar 

  53. Thorwarth D, Eschmann SM, Scheiderbauer J, Paulsen F, Alber M (2005) Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5:152

    Article  PubMed  PubMed Central  Google Scholar 

  54. Simoncic U, Leibfarth S, Welz S, Schwenzer N, Schmidt H, Reischl G, et al. (2017) Comparison of DCE-MRI kinetic parameters and FMISO-PET uptake parameters in head and neck cancer patients. Med Phys 44(6):2358–2368

  55. Even AJ, van der Stoep J, Zegers CM, Reymen B, Troost EG, Lambin P et al (2015) PET-based dose painting in non-small cell lung cancer: comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol 116(2):281–286

    Article  PubMed  Google Scholar 

  56. van Elmpt W, Zegers CM, Reymen B, Even AJ, Dingemans AM, Oellers M et al (2016) Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. Eur J Nucl Med Mol Imaging 43(2):240–248

    Article  PubMed  Google Scholar 

  57. Monnich D, Welz S, Thorwarth D, Pfannenberg C, Reischl G, Mauz PS et al (2015) Robustness of quantitative hypoxia PET image analysis for predicting local tumor control. Acta Oncol 54(9):1364–1369

    Article  PubMed  Google Scholar 

  58. Savi A, Incerti E, Fallanca F, Bettinardi V, Rossetti F, Monterisi C, et al. (2017) First evaluation of PET based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med 58(8):1224–1229

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Thorwarth.

Ethics declarations

Conflict of interest

Daniela Thorwarth, Linda-Jacqueline Wack and David Mönnich declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorwarth, D., Wack, LJ. & Mönnich, D. Hypoxia PET imaging techniques: data acquisition and analysis. Clin Transl Imaging 5, 489–496 (2017). https://doi.org/10.1007/s40336-017-0250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-017-0250-y

Keywords

Navigation