Skip to main content

Advertisement

Log in

Clinical PET imaging of tumour hypoxia in lung cancer

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present systematic review was to provide an overview on the different positron emission tomography (PET) hypoxia radiotracers in the clinical setting of lung cancer.

Methods

We performed a comprehensive literature review on the role of PET hypoxia imaging in lung cancer using the electronic databases PubMed and Scopus to select English written language articles on humans from January 2007 to February 2017. The following keywords have been used: “hypoxia” or “hypoxic” and “PET” and “lung cancer”. Reviews, clinical reports, and editorial articles were excluded.

Results

Originally, we considered 76 manuscripts, coming to a selection of 37 original articles. In particular, the selected original articles included the following PET radiotracer categories: nitroimidazole compounds, glucose analogue and bis(thiosemicarbazone) complexes. PET radiotracers, particularly nitroimidazole compounds, are the most suitable method to directly identify the presence of hypoxia in lung cancer.

Conclusions

Based on the literature review, the definition of the role of clinical application of PET hypoxia radiotracers has been provided reporting that in vivo hypoxia imaging is needed for effective treatment selection, individual treatment planning, and treatment monitoring in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Sze Ting Lee et al., Semin Nucl Med 37:451–461)

Fig. 2
Fig. 3

(Man Hu et al., Clin Nucl Med 2013;38: 591–596)

Fig. 4

(Lopci Egesta et al., Clin Nucl Med 2016;41: e87–e92)

Similar content being viewed by others

References

  1. Masoud GN, Li W (2015) HIF-1 alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389. doi:10.1016/j.apsh.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tamaki N, Hirata K (2016) Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol 21(4):619–625. doi:10.1007/s10147-015-0920-6

    Article  CAS  PubMed  Google Scholar 

  3. Brizel DM, Dodge RK, Clough RW, Dewhirst MW (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 53(2):113–117. doi:10.1016/S0167-8140(99)00102-4

    Article  CAS  PubMed  Google Scholar 

  4. Fyles AW, Milosevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane TJ, Hill RP (1999) Oxygenation predicts radiation response and survival in patients with cervix cancer (vol 48, pg 149, 1998. Radiother Oncol 50(3):371–371

    Article  Google Scholar 

  5. Nordsmark M, Hoyer M, Keller J, Nielsen OS (1996) The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol 35(4):701–708. doi:10.1016/0360-3016(96)00132-0

    Article  CAS  Google Scholar 

  6. Feldmann HJ, Becker A, Stadler P, Rhein A, Dunst J, Molls M (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Eur J Cancer 35:S19–S19

    Google Scholar 

  7. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276. doi:10.1093/jnci/93.4.266

    Article  CAS  PubMed  Google Scholar 

  8. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terriis DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24. doi:10.1016/j.radonc.2005.06.038

    Article  PubMed  Google Scholar 

  9. Hockel M, Vaupel P (2001) Biological consequences of tumor hypoxia. Semin Oncol 28(2):36–41. doi:10.1016/S0093-7754(01)90211-8

    Article  CAS  PubMed  Google Scholar 

  10. Busk M, Horsman MR (2013) Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Im 57(3):219–234

    CAS  Google Scholar 

  11. Bentzen SM, Gregoire V (2011) Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 21(2):101–110. doi:10.1016/j.semradonc.2010.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sovik A, Malinen E, Skogmo HK, Bentzen SM, Bruland OS, Olsen DR (2007) Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int J Radiat Oncol 68(5):1496–1504. doi:10.1016/j.ijrobp.2007.04.027

    Article  Google Scholar 

  13. Moon EJ, Brizel DM, Chi JTA, Dewhirst MW (2007) The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 9(8):1237–1294. doi:10.1089/ars.2007.1623

    Article  CAS  PubMed  Google Scholar 

  14. Langen KJ, Eschmann SM (2008) Correlative imaging of hypoxia and angiogenesis in oncology. J Nucl Med 49(4):515–516. doi:10.2967/jnumed.108.050559

    Article  PubMed  Google Scholar 

  15. Olive PL, Vikse C, Trotter MJ (1992) Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol 22(3):397–402

    Article  CAS  Google Scholar 

  16. Kurihara H, Honda N, Kono Y, Arai Y (2012) Radiolabelled agents for PET imaging of tumor hypoxia. Curr Med Chem 19(20):3282–3289

    Article  CAS  PubMed  Google Scholar 

  17. Challapalli A, Carroll L, Aboagye EO (2017) Molecular mechanisms of hypoxia in cancer. Clin Trans Imaging 5(3):225–253. doi:10.1007/s40336-017-0231-1

    Article  Google Scholar 

  18. Burgman P, O’Donoghue JA, Humm JL, Ling CC (2001) Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 42(1):170–175

    CAS  PubMed  Google Scholar 

  19. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, Humm JL (2005) Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol 62(2):545–553. doi:10.1016/j.ijrobp.2005.02.009

    Article  CAS  Google Scholar 

  20. van Baardwijk A, Dooms C, van Suylen RJ, Verbeken E, Hochstenbag M, Dehing-Oberije C, Rupa D, Pastorekova S, Stroobants S, Buell U, Lambin P, Vansteenkiste J, De Ruysscher D (2007) The maximum uptake of F-18-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-lot and GLUT-1 in non-small cell lung cancer. Eur J Cancer 43(9):1392–1398. doi:10.1016/j.ejca.2007.03.027

    Article  PubMed  Google Scholar 

  21. Mees G, Vangestel C, Dierckx R, Pauwels P, Van Meerbeeck J, Van de wiele C (2010) Carbonic anhydrase IX expression correlates with FDG uptake by primary non-small cell lung cancer. Cancer Biother Radio 25(2):149–154. doi:10.1089/cbr.2009.0658

    Article  CAS  Google Scholar 

  22. Dooms C, van Baardwijk A, Verbeken E, van Suylen RJ, Stroobants S, De Ruysscher D, Vansteenkiste J (2009) Association between 18F-fluoro-2-deoxy-d-glucose uptake values and tumor vitality: prognostic value of positron emission tomography in early-stage non-small cell lung cancer. J Thorac Oncol 4(7):822–828

    Article  PubMed  Google Scholar 

  23. Kaira K, Okumura T, Ohde Y, Takahashi T, Murakami H, Oriuchi N, Endo M, Kondo H, Nakajima T, Yamamoto N (2011) Correlation between F-18-FDG uptake on PET and molecular biology in metastatic pulmonary tumors. J Nucl Med 52(5):705–711. doi:10.2967/jnumed.111.087676

    Article  PubMed  Google Scholar 

  24. Kaira K, Okumura T, Nakagawa K, Ohde Y, Takahashi T, Murakami H, Naito T, Endo M, Kondo H, Nakajima T, Yamamoto N (2012) MUC1 expression in pulmonary metastatic tumors: a comparison of primary lung cancer. Pathol Oncol Res 18(2):439–447. doi:10.1007/s12253-011-9465-9

    Article  CAS  PubMed  Google Scholar 

  25. Schuurbiers OCJ, Meijer TWH, Kaanders JHAM, Looijen-Salamon MG, de Geus-Oei LF, van der Drift MA, van der Heijden EHFM, Oyen WJ, Visser EP, Span PN, Bussink J (2014) Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of (18)FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol 9(10):1485–1493. doi:10.1097/Jto.0000000000000286

    Article  CAS  PubMed  Google Scholar 

  26. Kaira K, Serizawa M, Koh Y, Takahashi T, Yamaguchi A, Hanaoka H, Oriuchi N, Endo M, Ohde Y, Nakajima T, Yamamoto N (2014) Biological significance of F-18-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer 83(2):197–204. doi:10.1016/j.lungcan.2013.11.025

    Article  PubMed  Google Scholar 

  27. Carvalho KC, Cunha IW, Rocha RM, Ayala FR, Cajaiba MM, Begnami MD, Vilela RS, Paiva GR, Andrade RG, Soares FA (2011) GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics 66(6):965–972. doi:10.1590/S1807-59322011000600008

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee J, Kim JO, Jung CK, Kim YS, Yoo IR, Choi WH, Jeon EK, Hong SH, Chun SH, Kim SJ, Kim YK, Kang JH (2014) Metabolic activity on [F-18]-Fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation. Clin Lung Cancer 15(2):E13–E21. doi:10.1016/j.cllc.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  29. Higashi K, Yamagishi T, Ueda Y, Ishigaki Y, Shimasaki M, Nakamura Y, Oguchi M, Takegami T, Sagawa M, Tonami H (2016) Correlation of HIF-1 alpha/HIF-2 alpha expression with FDG uptake in lung adenocarcinoma. Ann Nucl Med 30(10):708–715. doi:10.1007/s12149-016-1116-5

    Article  CAS  PubMed  Google Scholar 

  30. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [F-18]fluoromisonidazole and [F-18]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252. doi:10.1158/1078-0432.Ccr-0688-3

    Article  CAS  PubMed  Google Scholar 

  31. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, Machulla HJ, Bares R (2005) Prognostic impact of hypoxia imaging with F-18-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46(2):253–260

    PubMed  Google Scholar 

  32. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJR (2016) The role of new PET tracers for lung cancer. Lung Cancer 94:7–14. doi:10.1016/j.lungcan.2016.01.010

    Article  PubMed  Google Scholar 

  33. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with F-18-fluoromisonidazole. Semin Nucl Med 37(6):451–461. doi:10.1053/j.semnuclmed.2007.07.00.1

    Article  PubMed  Google Scholar 

  34. Thorwarth D, Eschmann SM, Paulsen F, Alber M (2005) A kinetic model for dynamic [F-18]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol 50(10):2209–2224. doi:10.1088/0031-9155/50/10/002

    Article  PubMed  Google Scholar 

  35. Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I, Menard JF, Modzelewski R, Thiberville L, Dubray B (2011) Simultaneous positron emission tomography (PET) assessment of metabolism with F-18-fluoro-2-deoxy-d-glucose (FDG), proliferation with F-18-fluoro-thymidine (FLT), and hypoxia with (18)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol 98(1):109–116. doi:10.1016/j.radonc.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  36. Hicks RJ, Rischin D, Fisher R, Binns D, Scott AM, Peters LJ (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32(12):1384–1391. doi:10.1007/s00259-005-1880-2

    Article  PubMed  Google Scholar 

  37. Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GAMS, Dubois L, Lambin P (2015) A comparative study of the hypoxia PET tracers [F-18] HX4, [F-18] FAZA, and [F-18] FMISO in a preclinical tumor model. Int J Radiat Oncol 91(2):351–359. doi:10.1016/j.ijrobp.2014.09.045

    Article  CAS  Google Scholar 

  38. Sachpekidis C, Thieke C, Haberkorn U, Debus J, Dimitrakopoulou-Strauss A (2014) Combined use of 18F-FDG and 18F-MISO in unresectable non-small cell lung cancer (NSCLC) patients planned for radiotherapy: a dynamic PET/CT study. J Nucl Med 55:1593

    Google Scholar 

  39. Yip C, Blower PJ, Goh V, Landau DB, Cook GJR (2015) Molecular imaging of hypoxia in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 42(6):956–976. doi:10.1007/s00259-015-3009-6

    Article  CAS  PubMed  Google Scholar 

  40. Bowen SR, van der Kogelb AJ, Nordsmark M, Bentzen SM, Jeraj R (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38(6):771–780. doi:10.1016/j.nucmedbio.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tachibana I, Nishimura Y, Shibata T, Kanamori S, Nakamatsu K, Koike R, Nishikawa T, Ishikawa K, Tamura M, Hosono M (2013) A prospective clinical trial of tumor hypoxia imaging with F-18-fluoromisonidazole positron emission tomography and computed tomography (F-MISO PET/CT) before and during radiation therapy. J Radiat Res 54(6):1078–1084. doi:10.1093/jrr/rrt033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC (2014) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21(10):1516–1554. doi:10.1089/ars.2013.5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Askoxylakis V, Dinkel J, Eichinger M, Stieltjes B, Sommer G, Strauss LG, Dimitrakopoulou-Strauss A, Kopp-Schneider A, Haberkorn U, Huber PE, Bischof M, Debus J, Thieke C (2012) Multimodal hypoxia imaging and intensity modulated radiation therapy for unresectable non-small-cell lung cancer: the HIL trial. Radiat Oncol. doi:10.1186/1748-717x-7-157

    PubMed  PubMed Central  Google Scholar 

  44. Grkovski M, Schwartz J, Rimner A, Schoder H, Carlin SD, Zanzonico PB, Humm JL, Nehmeh SA (2016) Reproducibility of F-18-fluoromisonidazole intratumour distribution in non-small cell lung cancer. EJNMMI Res. doi:10.1186/s13550-016-0210-y

    PubMed  PubMed Central  Google Scholar 

  45. Thureau S, Chaumet-Riffaud P, Modzelewski R, Fernandez P, Tessonnier L, Vervueren L, Cachin F, Berriolo-Riedinger A, Olivier P, Kolesnikov-Gauthier H, Blagosklonov O, Bridji B, Devillers A, Collombier L, Courbon F, Gremillet E, Houzard C, Caignon JM, Roux J, Aide N, Brenot-Rossi I, Doyeux K, Dubray B, Vera P (2013) Interobserver agreement of qualitative analysis and tumor delineation of F-18-Fluoromisonidazole and 3’-deoxy-3’-F-18-Fluorothymidine PET images in lung cancer. J Nucl Med 54(9):1543–1550. doi:10.2967/jnumed.112.118083

    Article  CAS  PubMed  Google Scholar 

  46. Chitneni SK, Palmer GM, Zalutsky MR, Dewhirst MW (2011) Molecular imaging of hypoxia. J Nucl Med 52(2):165–168. doi:10.2967/jnumed.110.075663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti S (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 4(4):365–384

    PubMed  PubMed Central  Google Scholar 

  48. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJB, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with F-18-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113

    PubMed  Google Scholar 

  49. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R, Sabri S (2003) [(18)F]Fluoroazomycinarabinofuranoside ((18)FAZA) and [(18)F]Fluoromisonidazole ((18)FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30(3):317–326. doi:10.1016/S0969-8051(02)00442-0

    Article  CAS  PubMed  Google Scholar 

  50. Kumar P, Stypinski D, Xia H, McEwan AJB, Machulla HJ, Wiebe LI (1999) Fluoroazomycin arabinoside (FAZA): synthesis, H-2 and H-3-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia. J Label Compd Rad 42(1):3–16. doi:10.1002/(Sici)1099-1344(199901)42:1<3:Aid-Jlcr160>3.3.Co;2-8

    Article  CAS  Google Scholar 

  51. Mapelli P, Incerti E, Fallanca F, Bettinardi V, Compierchio A, Masiello V, Doglioni C, Rossetti F, Negri G, Gianolli L, Picchio M (2017) Concomitant lung cancer and gastrointestinal stromal tumor first report of hypoxia imaging with F-18-FAZA PET/CT. Clin Nucl Med 42(7):E349–E351. doi:10.1097/Rlu.0000000000001704

    Article  PubMed  Google Scholar 

  52. Savi A, Incerti E et al (2017) First evaluation of PET based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. doi:10.2967/jnumed.113.122671

    PubMed  Google Scholar 

  53. Postema EJ, McEwan AJB, Riauka TA, Kumar P, Richmond DA, Abrams DN, Wiebe LI (2009) Initial results of hypoxia imaging using 1-alpha-d-(5-deoxy-5-[(18)F]-fluoroarabinofuranosyl)-2-nitroimidazole ((18)F-FAZA). Eur J Nucl Med Mol Imaging 36(10):1565–1573. doi:10.1007/s00259-009-1154-5

    Article  CAS  PubMed  Google Scholar 

  54. Verwer EE, van Velden FHP, Bahce I, Yaqub M, Schuit RC, Windhorst AD, Raijmakers P, Lammertsma AA, Smit EF, Boellaard R (2013) Pharmacokinetic analysis of [F-18]FAZA in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 40(10):1523–1531. doi:10.1007/s00259-013-2462-3

    Article  CAS  PubMed  Google Scholar 

  55. Bollineni VR, Kerner GSMA, Pruim J, Steenbakkers RJHM, Wiegman EM, Koole MJB, de Groot EH, Willemsen ATM, Luurtsema G, Widder J, Groen HJM, Langendijk JA (2013) PET imaging of tumor hypoxia using F-18-Fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180. doi:10.2967/jnumed.112.115014

    Article  CAS  PubMed  Google Scholar 

  56. Kerner GSMA, Bollineni VR, Hiltermann TJN, Sijtsema NM, Fischer A, Bongaerts AHH, Pruim J, Groen HJM (2016) An exploratory study of volumetric analysis for assessing tumor response with F-18-FAZA PET/CT in patients with advanced non-small-cell lung cancer (NSCLC). EJNMMI Res. doi:10.1186/s13550-016-0187-6

    PubMed  PubMed Central  Google Scholar 

  57. Bollineni VR, Koole MJ, Pruim J, Brouwer CL, Wiegman EM, Groen HJ, Vlasman R, Halmos GB, Oosting SF, Langendijk JA, Widder J, Steenbakkers RJ (2014) Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: possible implications for radiotherapy treatment planning strategies. Radiother Oncol 113(2):198–203. doi:10.1016/j.radonc.2014.10.010

    Article  PubMed  Google Scholar 

  58. Verwer EE, Bahce I, van Velden FHP, Yaqub M, Schuit RC, Windhorst AD, Raijmakers P, Hoekstra OS, Lammertsma AA, Smit EF, Boellaard R (2014) Parametric methods for quantification of F-18-FAZA kinetics in non-small cell lung cancer patients. J Nucl Med 55(11):1772–1777. doi:10.2967/jnumed.114.141846

    Article  CAS  PubMed  Google Scholar 

  59. Trinkaus ME, Blum R, Rischin D, Callahan J, Bressel M, Segard T, Roselt P, Eu P, Binns D, MacManus MP, Ball D, Hicks RJ (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481. doi:10.1111/1754-9485.12086

    Article  PubMed  Google Scholar 

  60. Iqbal R, Kramer GM, Verwer EE, Huisman MC, de Langen AJ, Bahce I, van Velden FHP, Windhorst AD, Lammertsma AA, Hoekstra OS, Boellaard R (2016) Multiparametric analysis of the relationship between tumor hypoxia and perfusion with F-18-Fluoroazomycin arabinoside and O-15-H2O PET. J Nucl Med 57(4):530–535. doi:10.2967/jnumed.115.166579

    Article  PubMed  Google Scholar 

  61. Hu M, Kong L, Zhao SQ, Yang GR, Yang WF, Han AQ, Fu Z, Ma L, Zheng JS, Yu JM (2010) Value of 18F-FETNIM PET-CT for detection of tumor hypoxia in non-small-cell lung cancer. Zhonghua Zhong Liu Za Zhi 32(6):463–466

    PubMed  Google Scholar 

  62. Hu M, Yu JM, Sun X, Zhao W, Yang G, Mu D, Zhao S, Xu X, Yuan S (2008) The valuation of [18F]FETNIM PET/CT imaging for detecting tumor hypoxia in non-small cell lung cancer. J Clin Oncol 26(15):7504

    Article  Google Scholar 

  63. Li L, Hu M, Zhu H, Zhao W, Yang GR, Yu JM (2010) Comparison of F-18-Fluoroerythronitroimidazole and F-18-Fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin Lung Cancer 11(5):335–340. doi:10.3816/Clc.2010.N.042

    Article  PubMed  Google Scholar 

  64. Hu M, Xing LG, Mu DB, Yang WF, Yang GR, Kong L, Yu JM (2013) Hypoxia imaging with F-18-Fluoroerythronitroimidazole integrated PET/CT and immunohistochemical studies in non-small cell lung cancer. Clin Nucl Med 38(8):591–596

    Article  PubMed  Google Scholar 

  65. Wei YC, Zhao W, Huang Y, Yu QX, Zhu SH, Wang SZ, Zhao SQ, Hu XD, Yu JM, Yuan SH (2016) A comparative study of noninvasive hypoxia imaging with F-18-Fluoroerythronitroimidazole and F-18-Fluoromisonidazole PET/CT in patients with lung cancer. PLoS One. doi:10.1371/journal.pone.0157606

    Google Scholar 

  66. Peeters SGJA, Zegers CML, Yaromina A, Van Elmpt W, Dubois L, Lambin P (2015) Current preclinical and clinical applications of hypoxia PET imaging using 2-nitroimidazoles. Q J Nucl Med Mol Im 59(1):39–57

    CAS  Google Scholar 

  67. van Loon J, Janssen MHM, Ollers M, Aerts HJWL, Dubois L, Hochstenbag M, Dingemans AMC, Lalisang R, Brans B, Windhorst B, van Dongen GA, Kolb H, Zhang J, De Ruysscher D, Lambin P (2010) PET imaging of hypoxia using [F-18]HX4: a phase I trial. Eur J Nucl Med Mol Imaging 37(9):1663–1668. doi:10.1007/s00259-010-1437-x

    Article  PubMed  Google Scholar 

  68. Zegers CML, van Elmpt W, Wierts R, Reymen B, Sharifi H, Ollers MC, Hoebers F, Troost EGC, Wanders R, van Baardwijk A, Brans B, Eriksson J, Windhorst B, Mottaghy FM, De Ruysscher D, Lambin P (2013) Hypoxia imaging with [F-18]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 109(1):58–64. doi:10.1016/j.radonc.2013.08.031

    Article  PubMed  Google Scholar 

  69. Zegers CML, van Elmpt W, Reymen B, Even AJG, Troost EGC, Ollers MC, Hoebers FJP, Houben RMA, Eriksson J, Windhorst AD, Mottaghy FM, De Ruysscher D, Lambin P (2014) In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [F-18]HX4 and [F-18]FDG-PET/CT imaging. Clin Cancer Res 20(24):6389–6397. doi:10.1158/1078-0432.CCR-14-1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zegers CML, van Elmpt W, Szardenings K, Kolb H, Waxman A, Subramaniam RM, Moon DH, Brunetti JC, Srinivas SM, Lambin P, Chien D (2015) Repeatability of hypoxia PET imaging using [F-18]HX4 in lung and head and neck cancer patients: a prospective multicenter trial. Eur J Nucl Med Mol Imaging 42(12):1840–1849. doi:10.1007/s00259-015-3100-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Even AJG, van der Stoep J, Zegers CML, Reymen B, Troost EGC, Lambin P, van Elmpt W (2015) PET-based dose painting in non-small cell lung cancer: comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol 116(2):281–286. doi:10.1016/j.radonc.2015.07.013

    Article  PubMed  Google Scholar 

  72. van Elmpt W, Zegers CML, Reymen B, Even AJG, Dingemans AMC, Oellers M, Wildberger JE, Mottaghy FM, Das M, Troost EGC, Lambin P (2016) Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. Eur J Nucl Med Mol Imaging 43(2):240–248. doi:10.1007/s00259-015-3169-4

    Article  PubMed  Google Scholar 

  73. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410. doi:10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  74. Vavere AL, Lewis JS (2008) Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nucl Med Biol 35(3):273–279. doi:10.1016/j.nuemedbio.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  75. Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Im 53(2):193–200

    CAS  Google Scholar 

  76. Valtorta S, Belloli S, Sanvito F, Masiello V, Di Grigoli G, Monterisi C, Fazio F, Picchio M, Moresco RM (2013) Comparison of F-18-Fluoroazomycin-Arabinofuranoside and Cu-64-Diacetyl-Bis(N4-Methylthiosemicarbazone) in preclinical models of cancer. J Nucl Med 54(7):1106–1112. doi:10.2967/jnumed.112.111120

    Article  CAS  PubMed  Google Scholar 

  77. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of Cu-64-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40(1):177–183

    CAS  PubMed  Google Scholar 

  78. Nie XY, Randolph GJ, Elvington A, Bandara N, Zheleznyak A, Gropler RJ, Woodard PK, Lapi SE (2016) Imaging of hypoxia in mouse atherosclerotic plaques with Cu-64-ATSM. Nucl Med Biol 43(9):534–542. doi:10.1016/j.nucmedbio.2016.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wong TZ, Lacy JL, Petry NA, Hawk TC, Sporn TA, Dewhirst MW, Vlahovic G (2008) PET of hypoxia and Perfusion with Cu-62-ATSM and Cu-62-PTSM Using a Zn-62/Cu-62 Generator. Am J Roentgenol 190(2):427–432. doi:10.2214/Ajr.07.2876

    Article  Google Scholar 

  80. Lohith TG, Kudo T, Demura Y, Umeda Y, Kiyono Y, Fujibayashi Y, Okazawa H (2009) Pathophysiologic correlation between Cu-62-ATSM and F-18-FDG in lung cancer. J Nucl Med 50(12):1948–1953. doi:10.2967/jnumed.109.069021

    Article  PubMed  Google Scholar 

  81. Zhang T, Das SK, Fels DR, Hansen KS, Wong TZ, Dewhirst MW, Vlahovic G (2013) PET With Cu-62-ATSM and Cu-62-PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions. Am J Roentgenol 201(5):W698–W706. doi:10.2214/Ajr.12.9698

    Article  Google Scholar 

  82. Lopci E, Grassi I, Rubello D, Colletti PM, Cambioli S, Gamboni A, Salvi F, Cicoria G, Lodi F, Dazzi C, Mattioli S, Fanti S (2016) Prognostic evaluation of disease outcome in solid tumors investigated with Cu-64-ATSM PET/CT. Clin Nucl Med 41(2):E87–E92. doi:10.1097/Rlu.0000000000001017

    Article  PubMed  Google Scholar 

  83. Kinoshita T, Fujii H, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H (2016) Prognostic significance of hypoxic PET using F-18-FAZA and Cu-62-ATSM in non-small-cell lung cancer. Lung Cancer 91:56–66. doi:10.1016/j.lungcan.2015.11.020

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of Health, Ricerca Finalizzata GR-2009-1575612.

Author information

Authors and Affiliations

Authors

Contributions

EI: Project development, literature search and review, content planning, manuscript writing and editing, final approval of the version to be published. PM: Content planning, manuscript writing and editing, final approval of the version to be published. MV: Literature search and final approval of the version to be published. FF: Critical revision of literature, manuscript editing and final approval of the version to be published. CM: Manuscript editing and final approval of the version to be published. VB: Critical revision of literature, manuscript editing and final approval of the version to be published. RMM: Critical revision of literature, manuscript editing and final approval of the version to be published. LG: Final approval of the version to be published. MP: Project development, content planning, manuscript writing and editing, final approval of the version to be published.

Corresponding author

Correspondence to M. Picchio.

Ethics declarations

Conflict of interest

E Incerti, P. Mapelli, M. Vuozzo, F. Fallanca, C. Monterisi, V. Bettinardi, R.M. Moresco, L. Gianolli, M. Picchio declare that they have no conflict of interest.

Ethical approval

Patient of Fig. 2 signed an informed consent prior to study participation, according to the Declaration of Helsinki and the protocol was approved by the local Ethical Committee (EudraCT Number: 2011-002647-98).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incerti, E., Mapelli, P., Vuozzo, M. et al. Clinical PET imaging of tumour hypoxia in lung cancer. Clin Transl Imaging 5, 427–445 (2017). https://doi.org/10.1007/s40336-017-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-017-0243-x

Keywords

Navigation