Skip to main content
Log in

Localisation of ductile and brittle shear zones along the Szentlőrinc-1 well in the Mecsekalja Zone using quartz microstructural and well-log data

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Quartz is among the most common minerals in the Earth’s crust and is stable within a wide range of temperature and pressure conditions. As its microstructure is sensitive to different deformation mechanisms, quartz may present information about the structural evolution of many different rock types. The Szentlőrinc-1 well with its drill cuttings brought to the surface from approximately 2 km depth provides an exclusive chance to investigate the shear zone beneath. The drill cutting collection includes only a few small rock grains, and more than 80 % of the material consists of tiny (<1 mm) single quartz grains. In this study, three microstructurally extreme quartz grain types were separated during microscopic analysis: grains with undulose extinction (U), grains with subgrains (S), and grains with recrystallized grains (R). Moreover, numerous microstructurally transitional grains were measured, which represent combinations of the above extremes. The characterisation of single quartz grain microstructures along the whole well enables identification and localisation of the ductile shear zones inside the crystalline complex. This information was combined with well-log data, which could provide information about the brittle deformation. Using these logs, brittle shear zones can be localised along the well. When comparing depths and extensions of the deformed horizons, a coincidence of the brittle and ductile zones becomes clear. This behaviour may suggest two different evolution schemes: it could be caused by primarily evolved softened regions, or it could be described by a detachment fault model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Árkai P, Nagy G, Dobosi G (1985) Polymetamorpic evolution of the South-Hungarian crystalline basement, Pannonian Basin: geothermometric and geobarometric data. Acta Geol Hung 28:165–190

    Google Scholar 

  • Asquith GB, Gibson CR (1982) Basic well log analysis for geologists. The American Association of Petroleum Geologists, Tulsa

    Google Scholar 

  • Balla Z, Császár G, Gulácsi Z, Gyalog L, Kaiser M, Király E, Koloszár L, Koroknai B, Magyari Á, Gy Maros, Marsi I, Molnár P, Rotárné Szalkai Á, Gy Tóth (2009) A Mórágyi-rög északkeleti részének földtana. Magyarország tájegységi térképsorozata. MÁFI, Budapest

    Google Scholar 

  • Bergerat F (1989) From pull-apart to the rifting process: the formation of the Pannonian Basin. Tectonophysics 157:271–280

    Article  Google Scholar 

  • Brady RJ (2002) Very high slip rates on continental extensional faults: new evidence from (U-Th)/He thermochronometry of the Buckskin Mountains, Arizona. Earth Planet Sci Lett 197:95–104

    Article  Google Scholar 

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: the zone of repeated tectonic inversion. Tectonophysics 297:51–71

    Article  Google Scholar 

  • Csontos L, Nagymarosy A, Horváth F, Kovac M (1992) Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208:221–241

    Article  Google Scholar 

  • Davis GA (1988) Rapid upward transport of mid-crustal mylonitic gneisses in the footwall of a Miocene detachment fault, Whipple Mountains, southeastern California. Geol Rundsch 77(1):191–209

    Article  Google Scholar 

  • Davis GA, Lister GS (1988) Detachment faulting in continental extension: perspectives from the southwestern U.S. Cordillera. In: John Rodgers symposium volume 218. Geological Society of America Special Papers, pp 133–159

  • Davis GA, Anderson JL, Frost EG, Shackleford TJ (1979) Regional Miocene detachment faulting and early Tertiary (?) mylonitization, Whipple-Buckskin-Rawhide Mountains, southeastern California and western Arizona. In: Abott PL (ed) Geological excursions in the Southern California Area. San Diego State University Publications, San Diego, California, Dept Geol Sci, pp 74–108

    Google Scholar 

  • Dell’Angelo LN, Tullis J (1996) Textural and mechanical evolution with progressive strain in experimentally deformed aplite. Tectonophysics 256:57–82

    Article  Google Scholar 

  • England PC (1987) Diffuse continental deformation; length scales, rates and metamorphic evolution. Philos Trans R Soc Lond 321:2–22

    Article  Google Scholar 

  • Fairhead JD, Binks RM (1991) Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system. Tectonophysics 187:191–203

    Article  Google Scholar 

  • Faulds JE, Geissman JW (1992) Implications of palaeomagnetic data on Miocene extension near a major accommodation zone in the Basin and Range Province. Tectonics 11:204–227

    Article  Google Scholar 

  • Fiser-Nagy Á, Varga-Tóth I, M Tóth T (2014) Lithology identification using open-hole well-log data in the metamorphic Kiskunhalas-NE hydrocarbon reservoir, South Hungary. Acta Geod Geophys 49:57–78

  • Fossen H (2010) Structural geology. Cambridge University Press, New York

    Book  Google Scholar 

  • Foster DA, Raza A (2002) Low temperature thermocronological record of exhumation of the Bitterrot metamorphic core complex, northern Cordilleran Orogen. Tectonophysics 349:23–36

    Article  Google Scholar 

  • Gans P, Mahood GA, Schermer E (1989) Synextensional magmatism in the Basin and Range Province: a case study from the eastern Great Basin. Geol Soc Am Spec Pap 233:1–53

    Google Scholar 

  • Gifkins RC (1976) Grain boundary sliding and its accommodation during creep and superplasticity. Metall Mater Trans A 7A:1225–1232

    Article  Google Scholar 

  • Haas J, Cs Péró (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci 93(2):297–313

    Article  Google Scholar 

  • Haas J, Budai T, Csontos L, Fodor L, Konrád G (2010) Pre-Cenozoic geological map of Hungary, 1:500,000. Geological Institute of Hungary, Budapest

    Google Scholar 

  • Haertel M, Herwegh M, Pettke T (2013) Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone. Tectonophysics 608:468–481

    Article  Google Scholar 

  • Halfpenny A, Prior DJ, Wheeler J (2012) Electron backscatter diffraction analysis to determine the mechanisms that operated during dynamic recrystallisation of quartz-rich rocks. J Struct Geol 36:2–15

    Article  Google Scholar 

  • Heidrick TL, Wilkins JW (1980) Field guide to the geology and ore deposits of the Buckskin Mountains. Arizona Geological Society, Spring Field Trip Guide, Arizona, p 31045

    Google Scholar 

  • Hills ES (1956) A contribution to the morphotectonics of Australia. J Geol Soc Aust 3:1–15

    Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159

    Article  Google Scholar 

  • Holdsworth RE, Butler CA, Roberts AM (1997) The recognition of reactivation during continental deformation. J Geol Soc Lond 154:73–78

    Article  Google Scholar 

  • Holdsworth RE, Hand M, Miller JA, Buick IS (2001) Continental reactivation and reworking: an introduction. In: Miller JA, Holdsworth RE, Buick IS, Hand M (eds) Continental reactivation and reworking, vol 184. Geological Society, London, Special Publications, Bath, pp 1–12

    Google Scholar 

  • Horváth H, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 266:287–300

    Article  Google Scholar 

  • Horváth F, Dövényi P, Szalay Á, Royden LH (1988) Subsidence, thermal, and maturation history of the Great Hungarian Plain. Am Assoc Pet Geol Mem 45:355–372

    Google Scholar 

  • Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89

    Article  Google Scholar 

  • Kerrich R (1988) Detachment zones of Cordilleran metamorphic core complexes: thermal, fluid and metasomatic regimes. Geol Rundsch 77(1):157–182

    Article  Google Scholar 

  • Kidder S, Avouac J-P, Chand Y-C (2013) Application of titanium-in-quartz thermobarometry to greenschistfacies veins and recrystallized quartzites in the Hsüehshan range, Taiwan. Solid Earth 4:1–21

    Article  Google Scholar 

  • Konrád Gy, Sebe K, Halász A, Babinszki E (2010) Sedimentology of Permian playa lake: the Boda Claystone Formation, Hungary. Geologos 16(1):27–41

  • Lelkes-Felvári G, Frank W (2006) Geochronology of the metamorphic basement, transdanubian part of the tisza mega-unit. Acta Geol Hung 49(3):189–206

    Article  Google Scholar 

  • Lister GS, Davis GA (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region. USA J Struct Geol 11(1/2):65–94

    Article  Google Scholar 

  • Lister GS, Etheridge MA, Symonds PA (1986) Application of the detachment fault model to the formation of passive continental margins. Geology 14:246–250

    Article  Google Scholar 

  • Lloyd GE, Law RD, Mainprice D, Wheeler J (1992) Microstructural and crystal fabric evolution during shear zone formation. J Struct Geol 14:1079–1100

    Article  Google Scholar 

  • Menegon L, Pennacchioni G, Heilbronner R, Pittarello L (2008) Evolution of quartz microstructure and c-axis crystallographic preferred orientation within ductilely deformed granitoids (Arolla unit, Western Alps). J Struct Geol 30:1332–1347

    Article  Google Scholar 

  • Michon L, Van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley rift system integrated at a European scale. Tectonophysics 367:101–126

    Article  Google Scholar 

  • Molnár L, M Tóth T, Schubert F (2014a) Structural controls on the petroleum migration and entrapment within faulted basement blocks of Szeghalom Dome (Pannonian Basin, SE Hungary). In press, Geol Croat

  • Molnár L, Vásárhelyi B, M Tóth T, Schubert F (2014b) Integrated petrographic—rock mechanic borecore study from the metamorphic basement of the Pannonian Basin, Hungary. Open Geosci 7(1):53–64

    Google Scholar 

  • Nagy Á, M Tóth T (2012) Petrology and tectonic evolution of the Kiskunhalas-NE fractured hydrocarbon reservoir, South Hungary. Cent Eur Geol 55(1):1–22

    Article  Google Scholar 

  • Olsen KH, Baldridge WS, Callender JF (1987) Rio Grande rift: an overview. Tectonophysics 143:119–139

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin

    Google Scholar 

  • Piper JDA, Dagley P, Carpenter AH (2010) Detachment and rotation of a metamorph core complex during extensional deformation: palaeomagnetic study of the Catalina-Rincon Core Complex, Basin and Range Province, Arizona. Tectonophysics 488:191–209

    Article  Google Scholar 

  • Posgay K, Takács E, Szalay I, Bodoky T, Hegedűs E, Kántor JI, Timár Z, Varga G, Bérczi I, Szalay Á, Nagy Z, Pápa A, Hajnal Z, Reilkoff B, Mueller S, Ansorge J, De Iaco R, Asudeh I (1996) International deep reflection survey along the Hungarian Geotraverse. Geophys Trans 40(1–2):1–44

    Google Scholar 

  • Prucha JJ (1992) Zone of weakness concept: a review and evaluation. In: Bartholomew MJ, Hyndman DW, Mogk DW, Mason R (eds) Basement tectonics 8: characterization and comparison of ancient and Mesozoic continental margins. In: Proceedings of the Eighth International Conference on Basement Tectonics held in Butte, Montana, USA, August 1988. Kluwer Academic Publishers, New York, pp 83–92

  • Rider M (1996) The geological interpretation of well logs, 2nd edn. Whittles, Caithness

    Google Scholar 

  • Rutter EH, Holdsworth RE, Knipe RJ (2001) The nature and tectonic significance of fault-zone weakening: an introduction. In: Holdsworth RE, Strachan RA, Magloughlin JF, Knipe RJ (eds) The nature and tectonic significance of fault zone weakening, vol 186. Geological Society of London, Special Publication, Bath, pp 1–11

    Google Scholar 

  • Schlumberger Limited (1989) Log interpretation principles/applications. Schlumberger Wireline & Testing, Texas

    Google Scholar 

  • Schubert F, M Tóth T (2001) Structural evolution of mylonitized gneiss zone from the Norther flank of the Szeghalom dome (Pannonian Basin, SE, Hungary). Acta Mineral Petrogr Szeged 42:59–64

    Google Scholar 

  • Shigematsu N (1999) Dynamic recrystallization in deformed plagioclase during progressive shear deformation. Tectonophysics 305:437–452

    Article  Google Scholar 

  • Skultéti Á, M Tóth T, Fintor K, Schubert F (2014) Deformation history reconstruction using single quartz grain Raman microspectroscopy data. J Raman Spectrosc 45(4):314–321

    Article  Google Scholar 

  • Sonder L, England PC (1986) Vertical averages of rheology of the continental lithospheric: relation to thin sheet parameters. Earth Planet Sci Lett 7:81–90

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a’natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 & #xB0;C. J Struct Geol 24:1861–1884

    Article  Google Scholar 

  • Stockli DF, Brichau S, Dewane TJ, Hager C, Schroeder J (2006) Dynamics of large-magnitude extension in the Whipple Mountains metamorphic core complex. Goldschmidt Conference Abstracts A616

  • Szederkényi T (1977) Geological evolution of South Transdanubia (Hungary) in Paleozoic time. Acta Min Pet Szeged 23(1):3–14

    Google Scholar 

  • Szederkényi T (1979) Origin of amphibolites and metavolcanics of crystalline complexes of south Transdanubia, Hungary. Acta Geol Hung 26(1–2):103–136

    Google Scholar 

  • Szederkényi T (1984) Az Alföld kristályos aljzata és földtani kapcsolatai. DSc thesis, pp 183

  • Szederkényi T (1996) Metamorphic formations and their correlation in the Hungarian part of the Tisza Megaunit (Tisza Composite Terrane). Acta Min Pet Szeged 37:143–160

    Google Scholar 

  • Tari G, Horváth F, Rumpler J (1992) Styles of extension in the Pannonian Basin. Tectonophysics 208(1–3):203–219

    Article  Google Scholar 

  • Tari G, Dövényi P, Dunkl I, Horváth F, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. Geol Soc Lond Spec Publ 156:215–250

    Article  Google Scholar 

  • Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirozzi A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160:743–759

    Article  Google Scholar 

  • Thorbergsdottir IM, Tulinius H, Ádám L, Gudmundsson G, Halldórsdottir HB, Traustason S, Hu Z, Yu G (2010) Geothermal Drilling for Space Heating in the Town of Szentlőrinc in SW Hungary. Proceedings World Geothermal Congress, Bali, pp 1–5

    Google Scholar 

  • Tittman J, Wahl JS (1965) The physical foundations of formation density logging (gamma-gamma). Geophysics 31(2):284–294

    Article  Google Scholar 

  • M Tóth T (2014) Geochemistry of the Görcsöny Ridge amphibolites (Tisza Unit, SW Hungary) and its geodynamic consequences. Geol Croat 67(1):17–32

    Article  Google Scholar 

  • M Tóth T, Zachar J (2006) Petrology and deformation history of the metamorphic basement in the Mezősas-Furta crystalline high (SE Hungary). Acta Geol Hung 49(2):165–188

    Article  Google Scholar 

  • M Tóth T, Schubert F, Zachar J (2000) Neogene exhumation of the Variscan Szeghalom Dome, Pannonian Basin, E. Hungary. Geol J 35:265–284

    Article  Google Scholar 

  • Tulinius H, Thorbergsdottir IM, Ádám L, Hu Z, Yu G (2010) Geothermal Evaluation in Hungary using integrated interpretation of well, seismic and MT Data. Proceedings World Geothermal Congress, Bali, pp 1–7

    Google Scholar 

  • Tullis J, Stünitz H, Teysser C, Heilbronner R (2000) Deformation microstructures in quartzo-feldspathic rocks. In: Jessel MW, Urai JL (eds): Stress, strain and structure. A volume in honour of WD means. J Virtual Explor 2

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. J Struct Geol 4:105–115

    Article  Google Scholar 

  • White SH (1976) The role of dislocation processes during tectonic deformation with special reference to quartz. In: Strens RJ (ed) The physics and chemistry of minerals and rocks. Wiley, London, pp 75–91

    Google Scholar 

  • White SH, Bretan PG, Rutter EH (1986) Fault-zone reactivation: kinematics and mechanisms. Philos Trans R Soc Lond A317:81–97

    Article  Google Scholar 

  • Wibberley CAJ, Yielding G, Di Toro G (2008) Recent advances in the understanding of fault zone internal structure: a review. In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Special Publication 299, London: Geological Society, pp. 5–33

  • Wilson JT (1966) Did the Atlantic close and then reopen? Nature 211:676–681

    Article  Google Scholar 

  • Zachar J, M Tóth T (2004) Petrology of metamorphic basement of the Tisza Block at the Jánoshalma High, S Hungary. Acta Geol Hung 47(4):349–371

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mannvit Ltd. and László Ádám for providing the samples and the Geo-Log Ltd. and the PannErgy Plc. for geophysical data. This research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0047. English was corrected by American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Skultéti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skultéti, Á., M. Tóth, T. Localisation of ductile and brittle shear zones along the Szentlőrinc-1 well in the Mecsekalja Zone using quartz microstructural and well-log data. Acta Geod Geophys 51, 295–314 (2016). https://doi.org/10.1007/s40328-015-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0127-3

Keywords

Navigation