Skip to main content
Log in

A total least squares solution for geodetic datum transformations

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

In this contribution, the symmetrical total least squares adjustment for 3D datum transformations is classified as quasi indirect errors adjustment (QIEA). QIEA is a traditional geodetic adjustment category invented by Wolf (Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 1968), which is specifically used for quasi nonlinear models. The form of the QIEA objective function contains the information of the functional model, and presents an unconstrained minimization problem referring simply to the transformation parameters. Based on QIEA, a solution is presented through a quasi-Newton approach, specially, the Broyden–Fletcher–Goldfarb–Shanno method. In order to justify the solutions of the QIEA, three validation conditions are proposed to check the correctness of the symmetrical treatment by comparison between the transformation and its reverse transformation. Finally, the applicability of the proposed algorithm was tested in a deformation monitoring task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acar A, Öylüdemir MT, Alkilmay O, Celik RN, Ayan T (2006) Deformation analysis with total least squares. Nat Hazards Earth Syst Sci 6:663–669

    Article  Google Scholar 

  • Amiri-Simkooei A, Jazaeri S (2012) Weighted total least squares formulated by standard least squares theory. J Geod Sci 2(2):113–124

    Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal 9(5):698–700

    Article  Google Scholar 

  • Awange JL, Grafarend EW, Palancz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Bleich P, Illner M (1989) Strenge Lösung der räumlichen Koordinatentransformation durch iterative Berechnung. AVN 96(4):133–144 (in German)

    Google Scholar 

  • Cai J, Grafarend E (2009) Systematical Analysis of the transformation between Gauss–Krueger-coordinate/DHDN and UTM-coordinate/ETRS89 in Baden—Württemberg with different estimation methods. Geod Refer Frames, Int Assoc Geod Symp 134(2009):205–211

    Google Scholar 

  • Eling D (2009) Terrestrisches Laserscanning für die Bauwerksüberwachung. Dissertation, Leibniz University Hanover, Nr 282 (in German)

  • Fang X (2011) Weighted total least squares solution for application in geodesy. PHD Dissertation, Leibniz University Hanover, Nr 294

  • Fang X (2013) Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J Geod 87(8):733–749

    Article  Google Scholar 

  • Felus F, Burtch R (2009) On symmetrical three-dimensional datum conversion. GPS Solut 13(1):65–74

    Article  Google Scholar 

  • Fletcher R (1987) Practical methods of optimization. Wiley, New York

    Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  • Golub G, Van Loan C (1980) An analysis of the Total least -squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  • Grafarend EW (2006) Linear And nonlinear models, fixed effects, random effects, and mixed models. Walter de Gruyter, Berlin

    Google Scholar 

  • Grafarend EW, Awange J (2003) Nonlinear analysis of the three-dimensional datum transformation. [conformal group C7(3)]. J Geod 77(1–2):66–76

    Article  Google Scholar 

  • Grafarend E, Awange JL (2012) Applications of linear and nonlinear models, fixed effects, random effects, and total least squares. Springer, Berlin

    Google Scholar 

  • Grafarend EW, Schaffrin B (1993) Ausgleichungsrechnung in linearen Modellen. BI-Wissenschaftsverlag, Mannheim (in German)

    Google Scholar 

  • Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am 4:629–642

    Article  Google Scholar 

  • Horn BKP, Hildren HM, Negahdaripour S (1988) Closed-form solution of absolute orientation, using orthonormal matrices. J Opt Soc Am 5:1127–1135

    Google Scholar 

  • Kanatani K, Niitsuna H (2012) Optimal computation of 3-D similarty: Gauss–Newton vs. Gauss–Helmert. Memoirs Fac Eng, Okayama Univ 46:21–22

    Google Scholar 

  • Koch K (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Leick A (2004) GPS satellite surveying. Wiley, New York

    Google Scholar 

  • Li B, Shen Y, Li W (2012) The seamless model for three-dimensional datum transformation. Sci China 55(12):2099–2108

    Article  Google Scholar 

  • Li B, Shen Y, Lou L (2013) Seamless multivariate affine error-in-variables transformation and its application to map rectification. Int J GIS 27(8):1572–1592

    Google Scholar 

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geod 84:751–762

    Article  Google Scholar 

  • Niitsuma H, Kanatani K (2011) Optimal computation of 3-D similarity from space data with inhomogeneous anisotropic noise distributions. In: Proceedings of the 16th Symposiun on Sensing via Imaging, Information, IS4-03: 01–08

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, New York

    Google Scholar 

  • Pope A (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th Annual Meeting of the American Society of Photogrammetry, Washington, pp 449–473

  • Prószyński W (2012) An approach to response-based reliability analysis of quasi-linear errors-in-variables models. J Geod. doi:10.1007/s00190-012-0590-3

  • Schaffrin B, Felus Y (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J Geod 82:373–383

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geod 82:415–421

    Google Scholar 

  • Shen Y, Chen Y, Zheng D (2006) A quanternion-based geodetic datum transformation. J Geod 80(5):233–239

    Article  Google Scholar 

  • Shen Y, Li BF, Chen Y (2010) An iterative solution of weighted total least-squares adjustment. J Geod 85:229–238

    Article  Google Scholar 

  • Snow K (2012) Topics in total least-squares adjustment within the errors-in-variables model: singular cofactor matrices and prior information. PHD Thesis. Report No. 502, The Ohio state university, Columbus

  • Teunissen PJG (1988) The non-linear 2D symmetric Helmert transformation: an exact non-linear least-squares solution. Manuscr Geod 62(1):1–16

    Google Scholar 

  • Van Huffel S, Vandewalle J (1991) The Total least -squares problem: computational aspects and analysis. Society for Industrial and Applied Mathematics, Philadelphia

  • Wolf H (1968) Ausgleichungsrechnung nach der Methode der kleinsten Quadrate. Dümmler, Bonn (in German)

  • Xu PL, Liu JN, Shi C (2012) Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J Geod 86(8):661–675

    Article  Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73:268–274

    Article  Google Scholar 

Download references

Acknowledgments

The research work presented in this paper was conducted during my doctoral studies at the Leibniz University of Hanover under the guidance of Professor Hansjörg Kutterer. This work is mainly supported by DFG research group FOR 584 earth rotation und global dynamic process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Fang.

Appendices

Appendix 1

The matrix analysis property in Grafarend and Schaffrin (1993) shows for the first derivative w.r.t. the parameter vector is as follows

$$\begin{aligned} \mathbf{J}_1 =\frac{\partial \mathbf{f}\left( {{\varvec{\upxi }},\mathbf{v}} \right) }{\partial {\varvec{\upxi }}^{T}}=\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\frac{\partial \mathbf{f}}{\partial \alpha _1 }}&{} {\frac{\partial \mathbf{f}}{\partial \alpha _2 }}&{} {\frac{\partial \mathbf{f}}{\partial \alpha _3 }}&{} {\frac{\partial \mathbf{f}}{\partial \mu }}&{} {\frac{\partial \mathbf{f}}{\partial \Delta x}}&{} {\frac{\partial \mathbf{f}}{\partial \Delta y}}&{} {\frac{\partial \mathbf{f}}{\partial \Delta z}} \\ \end{array} }} \right] \end{aligned}$$
(29)

with

$$\begin{aligned}&\displaystyle \frac{\partial \mathbf{f}\left( {{\varvec{\upxi }},\mathbf{v}} \right) }{\partial \alpha _i }=vec\left( {\left( {\mathbf{A}+\mathbf{V}_\mathbf{A} } \right) \mu {\dot{\mathbf{M}}}_i} \right) \quad i=1,2,3\end{aligned}$$
(30)
$$\begin{aligned}&\displaystyle \frac{\partial \mathbf{f}\left( {{\varvec{\upxi }},\mathbf{v}} \right) }{\partial \mu }=vec\left( {\left( {\mathbf{A}+\mathbf{V}_\mathbf{A} } \right) \mathbf{M}} \right) \end{aligned}$$
(31)
$$\begin{aligned}&\displaystyle \frac{\partial \mathbf{f}\left( {{\varvec{\upxi }},\mathbf{v}} \right) }{\partial \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {\Delta x}&{} {\Delta y}&{} {\Delta z} \\ \end{array} }} \right] }=\mathbf{I}_3 \otimes \mathbf{1}_n \end{aligned}$$
(32)

where

$$\begin{aligned} {\dot{\mathbf{M}}}_1&= \mathbf{M}_3 \mathbf{M}_2 \frac{\partial \mathbf{M}_1}{\partial \alpha _1 } \nonumber \\&= \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\cos \alpha _3 }&{} {\sin \alpha _3 }&{} 0 \\ {-\sin \alpha _3 }&{} {\cos \alpha _3 }&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\cos \alpha _2 }&{} 0&{} {-\sin \alpha _2 } \\ 0&{} 1&{} 0 \\ {\sin \alpha _2 }&{} 0&{} {\cos \alpha _2 } \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 0&{} 0 \\ 0&{} {-\sin \alpha _1 }&{} {\cos \alpha _1 } \\ 0&{} {-\cos \alpha _1 }&{} {-\sin \alpha _1 } \\ \end{array} }} \right] \qquad \end{aligned}$$
(33)
$$\begin{aligned} {\dot{\mathbf{M}}}_2&= \mathbf{M}_3 \frac{\partial \mathbf{M}_2}{\partial \alpha _2 }\mathbf{M}_1 \nonumber \\&= \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\cos \alpha _3 }&{} {\sin \alpha _3 }&{} 0 \\ {-\sin \alpha _3 }&{} {\cos \alpha _3 }&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {-\sin \alpha _2 }&{} 0&{} {-\cos \alpha _2 } \\ 0&{} 0&{} 0 \\ {\cos \alpha _2 }&{} 0&{} {-\sin \alpha _2 } \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 1&{} 0&{} 0 \\ 0&{} {\cos \alpha _1 }&{} {\sin \alpha _1 } \\ 0&{} {-\sin \alpha _1 }&{} {\cos \alpha _1 } \\ \end{array} }} \right] \qquad \end{aligned}$$
(34)
$$\begin{aligned} {\dot{\mathbf{M}}}_3&= \frac{\partial \mathbf{M}_3}{\partial \alpha _3 }\mathbf{M}_2 \mathbf{M}_1 \nonumber \\&= \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {-\sin \alpha _3 }&{} {\cos \alpha _3 }&{} 0 \\ {-\cos \alpha _3 }&{} {-\sin \alpha _3 }&{} 0 \\ 0&{} 0&{} 0 \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} {\cos \alpha _2 }&{} 0&{} {-\sin \alpha _2 } \\ 0&{} 1&{} 0 \\ {\sin \alpha _2 }&{} 0&{} {\cos \alpha _2 } \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c@{\quad }c} 1&{} 0&{} 0 \\ 0&{} {\cos \alpha _1 }&{} {\sin \alpha _1 } \\ 0&{} {-\sin \alpha _1 }&{} {\cos \alpha _1 } \\ \end{array} }} \right] \qquad \end{aligned}$$
(35)

Thus, the Jacobian matirx \(\mathbf{J}_1\) is written as the vector function \(\mathbf{J}_1 :=\mathbf{J}_1 \left( {{\varvec{\upxi }},\mathbf{V}_\mathbf{A} } \right) \) which relates to the parameter vector \({\varvec{\upxi }}\) and the correction matrix \(\mathbf{V}_\mathbf{A} \).

Similarly, the Jacobian matrix \(\mathbf{J}_2 \) is given as

$$\begin{aligned} \mathbf{J}_2 := \mathbf{J}_2 \left( {\varvec{\upxi }} \right) =\frac{\partial \mathbf{f}}{\partial \mathbf{l}^{T}}&= \left[ {{\begin{array}{l@{\quad }l} \displaystyle {\frac{\partial \mathbf{f}}{\partial vec^{T}\left( \mathbf{A} \right) }}&{} \displaystyle {\frac{\partial \mathbf{f}}{\partial vec^{T}\left( \mathbf{Y} \right) }} \\ \end{array} }} \right] \nonumber \\&= \left[ {{\begin{array}{ll} {\left( {\mu \mathbf{M}} \right) ^{T}\otimes \mathbf{I}_n }&{} {-\mathbf{I}_3 \otimes \mathbf{I}_n } \\ \end{array} }} \right] =\left[ {{\begin{array}{l@{\quad }l} {\left( {\mu \mathbf{M}} \right) ^{T}}&{} {-\mathbf{I}_3 } \\ \end{array} }} \right] \otimes \mathbf{I}_n \end{aligned}$$
(36)

due to \(vec\left( {\mathbf{I}_n \left( {\mathbf{A}+\mathbf{V}_\mathbf{A} } \right) \mu \mathbf{M}} \right) =\left( {\left( {\mu \mathbf{M}} \right) ^{T}\otimes \mathbf{I}_n } \right) vec\left( {\mathbf{A}+\mathbf{V}_\mathbf{A} } \right) \) using the matrix property \(vec\left( {\mathbf{ABC}} \right) =\left( {\mathbf{C}^{T}\otimes \mathbf{A}} \right) vec\left( \mathbf{B} \right) \) (see Koch 1999, p. 41). The Jacobian matrix \(\mathbf{J}_2\) only relates to the parameter vector \({\varvec{\upxi }}\).

Appendix 2

The matrix analysis property (differentiation of a scalar function w.r.t. a vector) can be used for the first derivative of the objective function (22) w.r.t. the parameter vector

$$\begin{aligned} \frac{\partial f\left( {\varvec{\upxi }} \right) }{\partial {\varvec{\upxi }}}=\left[ {{\begin{array}{c} \displaystyle {\frac{\partial f\left( {\varvec{\upxi }} \right) }{\partial \upxi _1 }} \\ {...} \\ \displaystyle {\frac{\partial f\left( {\varvec{\upxi }} \right) }{\partial \upxi _k }} \\ {...} \\ \displaystyle {\frac{\partial f\left( {\varvec{\upxi }} \right) }{\partial \upxi _7 }} \\ \end{array} }} \right] \end{aligned}$$
(37)

Here, the parameter vector \({\varvec{\upxi }}=\left[ {\upxi _i } \right] \) is given by its elements, and \(f\left( {\varvec{\upxi }} \right) =\mathbf{r}^{T}\mathbf{Q}_{\mathbf{rr}}^{-1} \mathbf{r}\).

The first derivative w.r.t. the parameter vector can be extended in three parts according to the product rule (the well-known Leibniz’s Law) as follows:

$$\begin{aligned} \frac{\partial \mathbf{r}^{T}\mathbf{Q}_{\mathbf{rr}}^{-1} \mathbf{r}}{\partial \upxi _k }&= \frac{\partial \mathbf{r}^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}}{\partial \upxi _k } \nonumber \\&= \frac{\partial \mathbf{r}^{T}}{\partial \upxi _k }\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}+\mathbf{r}^{T}\frac{\partial \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}}{\partial \upxi _k }\mathbf{r}+\mathbf{r}^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\frac{\partial \mathbf{r}}{\partial \upxi _k } \nonumber \\&= 2\frac{\partial \mathbf{r}^{T}}{\partial \upxi _k }\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}+\mathbf{r}^{T}\frac{\partial \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}}{\partial \upxi _k }\mathbf{r} \end{aligned}$$
(38)

The last row of the above equation is valid because \(\mathbf{r}^{T}\left( {{\hat{\mathbf{J}}}_2 \mathbf{Q}_{\mathbf{ll}} {\hat{\mathbf{J}}}_2^T } \right) ^{-1}\mathbf{r}\) is a scalar.

The first term of the above equation can be calculated as

$$\begin{aligned} \frac{\partial \mathbf{r}^{T}}{\partial {\hat{\varvec{\upxi }}}}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}=-\left( {\mathbf{J}_\mathbf{A} } \right) ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \end{aligned}$$
(39)

where

$$\begin{aligned} \mathbf{J}_\mathbf{A}=\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {vec\left( {\mathbf{A}\mu {\dot{\mathbf{M}}}_1 } \right) }&{} {vec\left( {\mathbf{A}\mu {\dot{\mathbf{M}}}_2 } \right) }&{} {vec\left( {\mathbf{A}\mu {\dot{\mathbf{M}}}_3} \right) }&{} {vec\left( {\mathbf{AM}} \right) }&{} {\mathbf{I}_3 \otimes \mathbf{1}_n } \\ \end{array} }} \right] \end{aligned}$$
(40)

The Jacobian matrix \({\hat{\mathbf{J}}}_\mathbf{A}\) is derived by a strategy wherein the Jacobian matrix \(\mathbf{J}_1\) is obtained (Appendix 1).

Then, the second term can be solved with \(\frac{\partial \mathbf{A}^{-1}}{\partial \upxi _k }=-\mathbf{A}^{-1}\frac{\partial \mathbf{A}}{\partial \upxi _k }\mathbf{A}^{-1}\) (see Grafarend and Schaffrin 1993) as

$$\begin{aligned} \mathbf{r}^{T}\frac{\partial \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}}{\partial \upxi _k }\mathbf{r}&= -\mathbf{r}^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\frac{\partial \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) }{\partial \upxi _k }\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \nonumber \\&= -2\mathbf{r}^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \frac{\partial \left( {\left[ {{\begin{array}{l} {\left( {\mu \mathbf{M}} \right) \otimes \mathbf{I}_n } \\ {-\mathbf{I}_3 \otimes \mathbf{I}_n } \\ \end{array} }} \right] } \right) }{\partial \upxi _k }\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \nonumber \\&= -2\left( {\frac{\partial \left( {\left[ {{\begin{array}{l@{\quad }l} {\left( {\mu \mathbf{M}} \right) ^{T}}&{} {-\mathbf{I}_3 } \\ \end{array} }} \right] \otimes \mathbf{I}_n } \right) }{\partial \upxi _k }\mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}} \right) ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \nonumber \\&= -2\left( {\left( {\frac{\partial \left( {\mu \mathbf{M}} \right) ^{T}}{\partial \upxi _k }\otimes \mathbf{I}_n } \right) \left[ {{\begin{array}{l@{\quad }l} {\mathbf{Q}_{\mathbf{AA}} }&{} {\mathbf{Q}_{\mathbf{AY}} } \\ \end{array} }} \right] \mathbf{J}_2^T \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}} \right) ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \nonumber \\&= -2vec^{T}\left( {\mathbf{A}^{*}\frac{\partial \left( {\mu \mathbf{M}} \right) }{\partial \upxi _k }} \right) \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \end{aligned}$$
(41)

with

$$\begin{aligned} \mathbf{A}^{*}=\mathbf{A}^{*}\left( {\varvec{\upxi }} \right) =-Ivec_{n\times u} \left( {\left[ {{\begin{array}{l@{\quad }l} {\mathbf{Q}_{\mathbf{AA}} }&{} {\mathbf{Q}_{\mathbf{AY}} } \\ \end{array} }} \right] \mathbf{J}_2^T \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}} \right) \end{aligned}$$
(42)

where the operator \(Ivec_{n\times u}\) is the opposite of the ‘vec’ operator and reshapes the vector as the assigned matrix form. The last row of the above equation is due to the matrix property \(vec\left( {\mathbf{ABC}} \right) =\left( {\mathbf{C}^{T}\otimes \mathbf{A}} \right) vec\left( \mathbf{B} \right) \). Actually, \({\hat{\mathbf{A}}}^{*}\) is identical to the estimated correction matrix obtained by Eq. (20), but it relates now only to the parameter and is therefore correctly applied since there is no correction matrix in the QIEA.

For the whole parameter vector, the first derivative can be obtained by a combination of the above Eqs. (39) and (41) in Appendix 2:

$$\begin{aligned} \frac{\partial f\left( {\varvec{\upxi }} \right) }{\partial {\varvec{\upxi }}}&= -2\left( {\mathbf{J}_\mathbf{A}} \right) ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}\nonumber \\&-2\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {vec\left( {\mathbf{A}^{*}\mu {\dot{\mathbf{M}}}_1} \right) }&{} {vec\left( {\mathbf{A}^{*}\mu {\dot{\mathbf{M}}}_2} \right) }&{} {vec\left( {\mathbf{A}^{*}\mu {\dot{\mathbf{M}}}_3} \right) }&{} {vec\left( {\mathbf{A}^{*}\mathbf{M}} \right) }&{} \mathbf{0} \\ \end{array} }} \right] ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \nonumber \\&= -2\left[ {{\begin{array}{c} {vec^{T}\left( {\left( {\mathbf{A}+\mathbf{A}^{*}} \right) \mu {\dot{\mathbf{M}}}_1} \right) } \\ {vec^{T}\left( {\left( {\mathbf{A}+\mathbf{A}^{*}} \right) \mu {\dot{\mathbf{M}}}_2} \right) } \\ {vec^{T}\left( {\left( {\mathbf{A}+\mathbf{A}^{*}} \right) \mu {\dot{\mathbf{M}}}_3} \right) } \\ {vec^{T}\left( {\left( {\mathbf{A}+\mathbf{A}^{*}} \right) \mathbf{M}} \right) } \\ {\mathbf{I}_3 \otimes \mathbf{1}_n^T } \\ \end{array} }} \right] \left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r}=-2\left( {\mathbf{J}_1} \right) ^{T}\left( {\mathbf{J}_2 \mathbf{Q}_{\mathbf{ll}} \mathbf{J}_2^T } \right) ^{-1}\mathbf{r} \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X. A total least squares solution for geodetic datum transformations. Acta Geod Geophys 49, 189–207 (2014). https://doi.org/10.1007/s40328-014-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-014-0046-8

Keywords

Navigation