Skip to main content
Log in

On Ventcel-type transmission conditions for a Helmholtz problem with a non-uniform thin layer

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We study the asymptotic behaviour of the electric field in the transverse magnetic (TM) mode, propagating in a material composed of a two-dimensional object surrounded by a thin layer of non-constant thickness and embedded in an ambient medium. Using an asymptotic expansion of the solution \(u^{\varepsilon }\) to the Helmholtz problem, we derive Ventcel-type transmission conditions on the limit interface \(\Gamma \) modelling the effect of the thin layer with accuracy up to \(O(\varepsilon ^{2})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

Not applicable.

References

  1. Abboud, T., Ammari, H.: Diffraction at a curved grating: TM and TE cases, homogenization. J. Math. Anal. Appl. 202(3), 995–1026 (1996)

    Article  MathSciNet  Google Scholar 

  2. Abdallaoui, A.: Approximate impedance of a thin layer for the second problem of the plane state of strain in the framework of asymmetric elasticity. Int. J. Appl. Comput. Math. 7, 141 (2021)

    Article  MathSciNet  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17(1), 35–92 (1964)

    Article  MathSciNet  Google Scholar 

  4. Aslanyurek, B., Haddar, H., Sahinturk, H.: Generalized impedance boundary conditions for thin dielectric coatings with variable thickness. Wave Mot. 48(7), 681–700 (2011)

    Article  MathSciNet  Google Scholar 

  5. Auvray, A., Vial, G.: Asymptotic expansions and effective boundary conditions: a short review for smooth and nonsmooth geometries with thin layers. ESAIM Proc. Surv. 61, 38–54 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bendali, A., Lemrabet, K.: The effect of a thin coating on the scaterring of the time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Maths. 56(6), 1664–1693 (1996)

    Article  Google Scholar 

  7. Bonnaillie-Noël, V., Dambrine, M., Hérau, F., Vial, G.: On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42(2), 931–945 (2010)

    Article  MathSciNet  Google Scholar 

  8. Boutarene, K.E.: Approximation de l’impédance d’une inclusion mince contrastée pour un problème de transmission en diffraction des ondes. PhD thesis, Université des sciences et de la technologie Houari Boumèdiene (USTHB), Alger (2015)

  9. Boutarene, K.E.: Ventcel-type transmission conditions for a Poisson problem at high-low diffusion. Mediterr. J. Math. 14, 143 (2017)

    Article  MathSciNet  Google Scholar 

  10. Boutarene, K.E., Cocquet, P.-H.: Scattering of a scalar time-harmonic wave by a penetrable obstacle with a thin layer. Eur. J. Appl. Math. 27(2), 264–310 (2016)

    Article  MathSciNet  Google Scholar 

  11. Boutarene, K.E., Galleze, S.: Ventcel-type transmission conditions for the scattering of a time-harmonic wave problem with accuracy up to order 3. Taiwan. J. Math. 27(4), 685–717 (2023). https://doi.org/10.11650/tjm/230201

    Article  MathSciNet  Google Scholar 

  12. Cakoni, F., de Teresa, I., Haddar, H., Monk, P.: Nondestructive testing of the delaminated interface between two materials. SIAM J. Appl. Math. 76(6), 2306–2332 (2016)

    Article  MathSciNet  Google Scholar 

  13. Chen, G., Zhou, J.: Boundary Element Methods with Applications to Nonlinear Problems. Atlantis Press, Ansterdam-Paris (2010)

    Book  Google Scholar 

  14. De Maio, U., Gaudiello, A., Sili, A.: An uncoupled limit model for a high-contrast problem in a thin multi-structure. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 33(1), 39–64 (2022)

    Article  MathSciNet  Google Scholar 

  15. Diaz, J., Péron, V.: Equivalent Robin boundary conditions for acoustic and elastic media. Math. Models Methods Appl. Sci. 26(8), 1531–1566 (2016)

    Article  MathSciNet  Google Scholar 

  16. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, 2nd edn. Dover Publications, Mineola (2016)

    Google Scholar 

  17. Mokhtari, H., Rahmani, L.: Asymptotic modeling of a reinforced plate with a thin layer of variable thickness. Meccanica 57, 2155–2172 (2022)

    Article  MathSciNet  Google Scholar 

  18. Nédélec, J.-C.: Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, vol. 144. Springer, Berlin (2001)

    Book  Google Scholar 

  19. Péron, V.: Asymptotic models and impedance conditions for highly conductive sheets in the time-harmonic eddy current model. SIAM J. Appl. Math. 79(6), 2242–2264 (2019)

    Article  MathSciNet  Google Scholar 

  20. Poignard, C.: Approximate transmission conditions through a weakly oscillating thin layer. Math. Methods Appl. Sci. 32(4), 435–453 (2009)

    Article  MathSciNet  Google Scholar 

  21. Rellich, F.: Über das asymptotische Verhalten der Lö sungen von \(\Delta u+\lambda u=0\) in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53, 57–65 (1943)

    MathSciNet  Google Scholar 

  22. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  23. Taylor, M.E.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)

    Google Scholar 

  24. Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. Plenum Press, New York (1980)

    Book  Google Scholar 

  25. Yuferev, S.V., Ida, N.: Surface Impedance Boundary Conditions: A Comprehensive Approach. CRC Press, Boca Raton (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled El-Ghaouti Boutarene.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Calculation of the first three terms of the asymptotic expansion

Appendix A Calculation of the first three terms of the asymptotic expansion

1.1 A.1 Term of order 0

Equation (28) and conditions (25) and (27) give

$$\begin{aligned} \partial _{s}U_{m, \beta }^{0}=0, \ \ \ \ \beta \in \left\{ 1,2 \right\} . \end{aligned}$$

Using (22), (23) and (24), we get \(\forall (t,s)\in \Omega _{m,\beta }\)

$$\begin{aligned} U_{m,\beta }^{0}(t,s)=u_{-}^{0}|_{\Gamma }=u_{+}^{0}|_{\Gamma }. \end{aligned}$$
(A1)

Equation (29) implies

$$\begin{aligned} \partial _{s}^{2}U_{m,\beta }^{1}=A_{\beta ,1}U_{m,\beta }^{0}=0. \end{aligned}$$

Using (25), (26) and (27), we obtain \(\forall (t,s)\in \Omega _{m,\beta }\)

$$\begin{aligned} \partial _{s}U_{m,2}^{1}(t,s) = f(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma },\ \partial _{s}U_{m,1}^{1}(t,s)=\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }, \ \ \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }=\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }. \nonumber \\ \end{aligned}$$
(A2)

1.2 A.2 Term of order 1

Relation (A2) with conditions (22) and (24) yield \(\forall (t,s)\in \Omega _{m,\beta }\)

$$\begin{aligned}{} & {} U_{m,1}^{1}(t,s)= u_{-}^{1}|_{\Gamma } + \left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) s,\\{} & {} U_{m,2}^{1}(t,s)= u_{+}^{1}|_{\Gamma }+ \left( d+f(t)-f(t) \alpha _+ + sf(t) \alpha _+ \right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }. \end{aligned}$$

So (23) gives

$$\begin{aligned} u_{+}^{1}|_{\Gamma }-u_{-}^{1}|_{\Gamma }=\dfrac{f(t) \alpha _{+}\alpha _{-}-(d+f(t))\alpha _{-}+d\alpha _{+}}{2\alpha _{+}\alpha _{-}}(\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+ \alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }). \end{aligned}$$
(A3)

From (30) and (31), we have

$$\begin{aligned} \partial _{s}^{2}U_{m,1}^{2}= & {} A_{1,1}U_{m,1}^{1}+A_{1,2}U_{m,1}^{0}-k_{-}^{2}U_{m,1}^{0} =-c(t)\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }-\partial _{t}^{2}u_{-}^{0}|_{\Gamma }-k_{-}^{2}u_{-}^{0}|_{\Gamma }.\\ \partial _{s}^{2}U_{m,2}^{2}= & {} A_{1}U_{m,2}^{1}+A_{2}U_{m,2}^{0}-k_m^{2}U_{m,2}^{0}=-c(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\partial _{t} ^{2}u_{+}^{0}|_{\Gamma }-k_{m}^{2}u_{+}^{0}|_{\Gamma }. \end{aligned}$$

Using (25) and (27) , we obtain \(\forall (t,s) \in \Omega _{m,\beta }\)

$$\begin{aligned} \partial _{s}U_{m,1}^{2}(t,s)&=\left[ -c(t)\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma }-\partial _{t}^{2}u_{-}^{0}|_{\Gamma }-k_{-}^{2}u_{-}^{0} |_{\Gamma }\right] s+\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }. \end{aligned}$$
(A4)
$$\begin{aligned} \partial _{s}U_{m,2}^{2}(t,s)&=\left[ -c(t)\alpha _{+}\partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }-\partial _{t}^{2}u_{+}^{0}|_{\Gamma }-k_{m}^{2}u_{-} ^{0}|_{\Gamma }\right] \left( s-1\right) +f(t)\alpha _{+}\partial _{n} u_{+}^{1}|_{\Gamma }\nonumber \\&\quad -c(t)f(t)f^{\prime }(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+f(t)f^{\prime }(t)\partial _{t}u_{+}^{0}|_{\Gamma }\nonumber \\&\quad +(d+f(t))f(t)\alpha _{+}\partial _{{\textbf{n}}}^{2}u_{+}^{0}|_{\Gamma }. \end{aligned}$$
(A5)

Now, from Condition (26) at order 1, we get

$$\begin{aligned} \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }-\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }= & {} \frac{c(t)(f'(t)-d f(t)-1)}{f(t)}\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{df(t) \alpha _- +1}{f(t)} \partial _{t}^{2}u_{+}^{0}|_{\Gamma } \nonumber \\{} & {} -\frac{dk_-^2\alpha _- + k_m^2}{f(t)} u_{+}^{0}|_{\Gamma }- f'(t) \partial _t u_{+}^{0}|_{\Gamma } \nonumber \\{} & {} -(d+f(t))\alpha _{+}\partial _n^2u_{+}^{0}|_{\Gamma }. \end{aligned}$$
(A6)

As

$$\begin{aligned} \bigtriangleup u_{+}&=\left[ \dfrac{(1+\eta c(t)(d+f(t))^{2}+\eta ^{2}f^{\prime 2}(t)}{(d+f(t))^{2}(1+\eta c(t)(d+f(t))^{2}}\partial _{\eta } ^{2}-\dfrac{2\eta f^{\prime }(t)}{(d+f(t))(1+\eta c(t)(d+f(t))^{2}}\partial _{t}\partial _{\eta }\right. \\&\quad +\dfrac{1}{(1+\eta c(t)(d+f(t))^{2}}\partial _{t}^{2}-\dfrac{\eta dc^{\prime }(t)+\eta c^{\prime }(t)f(t)}{(1+\eta c(t)(d+f(t))^{3}}\partial _{t}\\&\quad +\left( \dfrac{c(t)}{(d+f(t))(1+\eta c(t)(d+f(t))}+\dfrac{\eta (-f(t)f^{\prime \prime }(t)+2f^{\prime 2}(t))}{(d+f(t))^{2}(1+\eta c(t)(d+f(t))^{2}}\right. \\&\quad +\left. \left. \dfrac{\eta dc^{\prime }(t)f(t)f^{\prime 2}(t)c^{\prime 2}(t)f^{\prime }(t)}{(d+f(t))f^{2}(t)(1+\eta c(t)(d+f(t))^{3}}\right) \partial _{\eta }\right] \widetilde{u}_{+}. \end{aligned}$$

and

$$\begin{aligned} \partial _{\eta } u_+ (t,\eta )_{|\eta =0}=(d+f(t)) \partial _n u_+ |_{\Gamma }, \end{aligned}$$

it follows by taking the limit \(\eta \rightarrow 0,\) we obtain

$$\begin{aligned} \partial _{t}^{2}u_{+}|_{\eta =0}+\frac{c(t)}{d+f(t)}\partial _{\eta }u_{+}^{n}|_{\eta =0}+\frac{1}{(d+f(t))^2}\partial _{\eta }^{2}u_{+}^{n}|_{\eta =0}+k_{+}^{2}u_{+}|_{\eta =0}=0, \end{aligned}$$

i.e.

$$\begin{aligned} \partial _{{\textbf{n}}}^{2}u_{+}|_{\Gamma }=-\partial _{t}^{2}u_{+}|_{\Gamma }-c(t)\partial _{{\textbf{n}}}u_{+}|_{\Gamma }-k_{+}^{2}u_{+}|_{\Gamma }. \end{aligned}$$
(A7)

So (A6) becomes

$$\begin{aligned} \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{1}-\alpha _{-}\partial _{{\textbf{n}}} u_{-}^{1}= & {} \dfrac{ (d+f(t))f(t) \alpha _+ - df(t) \alpha _- - 1}{2f(t)} \left( \partial _t^2 u^0_+ + \partial _t^2 u^0_- \right) \nonumber \\ {}{} & {} + \dfrac{ (d+f(t))f(t) k_+^2 \alpha _+ - d f(t) k_-^2 \alpha _- - k_m^2 }{2f(t)}\left( u^0_+ +u^0_- \right) \nonumber \\{} & {} + \dfrac{c(t)(f^2(t)-1)}{2f(t)} \left( \alpha _+ \partial _n u_+^0+ \alpha _- \partial _n u_-^0 \right) \nonumber \\ {}{} & {} + \dfrac{f'(t)(\alpha _+-1)}{2} \left( \partial _t u_+^0+ \partial _t u_-^0 \right) . \end{aligned}$$
(A8)

1.3 A.3 Term of order 2

Relations (A4) and (A5) with conditions (22) and (24) yield \(\forall (t,s)\in \Omega _{m,\beta }\)

$$\begin{aligned} U_{m,1}^{2}(t,s)= & {} \left[ -c(t)\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }-\partial _{t}^{2}u_{-}^{0}|_{\Gamma }-k_{-}^{2}u_{-}^{0}|_{\Gamma }\right] \frac{s^2}{2} + \partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }s + u_{-}^{2}|_{\Gamma }. \end{aligned}$$
(A9)
$$\begin{aligned} U_{m,2}^{2}(t,s)= & {} \left[ -c(t)\alpha _+ \partial _{{\textbf{n}}} u_{+}^{0}|_{\Gamma }-\partial _{t}^{2}u_{+}^{0}|_{\Gamma }-k_{m}^{2}u_{-} ^{0}|_{\Gamma }\right] \frac{s^2-2s+1}{2} + \left[ f(t) \alpha _+ \partial _n u_{+}^{1}|_{\Gamma } \right. \nonumber \\{} & {} \left. -c(t)f(t)f'(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+f(t)f'(t) \partial _t u_{+}^{0}|_{\Gamma }+(d+f(t))f(t)\alpha _{+}\partial ^2_{{\textbf{n}}} u_{+}^{0}|_{\Gamma }\right] (s-1) \nonumber \\ {}{} & {} +\left( d+f(t) \right) \partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }+\frac{\left( d+f(t) \right) ^2}{2} \partial _{{\textbf{n}}}^2 u_{+}^{0}|_{\Gamma }+ u_{+}^{2}|_{\Gamma }. \end{aligned}$$
(A10)

So (23) with (A7) and (A8) we get

$$\begin{aligned} u_{+}^{2}|_{\Gamma }-u_{-}^{2}|_{\Gamma }= & {} -\frac{1}{2}\left[ -c(t)\alpha _+ \partial _{{\textbf{n}}} u_{+}^{0}|_{\Gamma }-\partial _{t}^{2}u_{+}^{0}|_{\Gamma }-k_{m}^{2}u_{-}^{0}|_{\Gamma }\right] + \left[ f(t) \alpha _+ \partial _n u_{+}^{1}|_{\Gamma } \right. \nonumber \\{} & {} \left. -c(t)f(t)f'(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+f(t)f'(t) \partial _t u_{+}^{0}|_{\Gamma }+(d+f(t))f(t)\alpha _{+}\partial ^2_{{\textbf{n}}} u_{+}^{0}|_{\Gamma }\right] \nonumber \\{} & {} - \left( d+f(t) \right) \partial _{{\textbf{n}}} u_{+}^{1}|_{\Gamma }-\frac{\left( d+f(t) \right) ^2}{2} \partial ^2_{{\textbf{n}}} u_{+}^{0}|_{\Gamma } + \left[ -c(t)\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }-\partial _{t}^{2}u_{-}^{0}|_{\Gamma } \right. \nonumber \\ {}{} & {} \left. -k_{-}^{2}u_{-}^{0}|_{\Gamma }\right] \frac{d^2}{2}+d \partial _n u_{-}^{1}|_{\Gamma }. \end{aligned}$$
(A11)
$$\begin{aligned} u_{+}^{2}|_{\Gamma }-u_{-}^{2}|_{\Gamma }= & {} \frac{ f(t) \alpha _+ \alpha _-+d \alpha _+-(d+f(t))\alpha _- }{\alpha _+ \alpha _-} \alpha _+ \partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma } \nonumber \\ {}{} & {} +\left( \frac{\left( f(t)-2f^2(t)f'(t)-2df^2(t)-2 f^3(t) \right) \alpha _+ \alpha _- -\left( d^2 f(t) +2df^2(t)-2d \right) \alpha _+ }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\{} & {} \left. + \frac{ (d+f(t))^2 f(t) \alpha _- }{2f(t) \alpha _+ \alpha _-} \right) c(t) \alpha _+ \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma } + \left( \frac{-2(d+f(t))f^2(t) \alpha _+^2 \alpha _- }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\{} & {} + \left. \frac{ -2d(d+f(t))f(t)\alpha _+^2 + (f(t)+2d^2f(t)+f^3(t)+2df^2(t))\alpha _+ \alpha _-+2d \alpha _+ }{2f(t) \alpha _+ \alpha _-} \right) \nonumber \\ {}{} & {} \times \partial _{t}^2u_{+}^{0}|_{\Gamma }+\left( \frac{-2(d+f(t))f^2(t)k_+^2\alpha _+^2 \alpha _- -2d(d+f(t))f(t) k_+^2\alpha _+^2 }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\ {}{} & {} +\left. \frac{ +[k_m^2+d^2k_-^2+(d+f(t))^2k_+^2]f(t) \alpha _+\alpha _- +2d k_m^2 \alpha _+}{2f(t) \alpha _+ \alpha _-} \right) u_{+}^{0}|_{\Gamma } \nonumber \\{} & {} +\frac{f(t)\alpha _+ \alpha _- - d \alpha _+^2 +d\alpha _+}{\alpha _+ \alpha _-} f'(t) \partial _t u_{+}^{0}|_{\Gamma }. \end{aligned}$$
(A12)

Using (A8) we get

$$\begin{aligned} u_{+}^{2}|_{\Gamma }-u_{-}^{2}|_{\Gamma }= & {} \frac{ f(t) \alpha _+ \alpha _-+d \alpha _+-(d+f(t))\alpha _- }{\alpha _+ \alpha _-} \alpha _- \partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma } \nonumber \\ {}{} & {} +\left( \frac{\left( -f(t)-2f^2(t)f'(t)-2df^2(t) \right) \alpha _+ \alpha _- +\left( -f^3(t)+d^2f(t)+2f(t)+2d \right) \alpha _- }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\{} & {} \left. - \frac{d^2 f(t) \alpha _+ }{2f(t) \alpha _+ \alpha _-} \right) c(t) \alpha _+ \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma } + + \left( \frac{-2df^2(t) \alpha _+ \alpha _-^2+2df(t)(d+f(t))\alpha _-^2 }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\{} & {} + \left. \frac{ - (f(t)+2d^2f(t)+f^3(t)+2df^2(t))\alpha _+ \alpha _-+2(d+f(t)) \alpha _- }{2f(t) \alpha _+ \alpha _-} \right) \partial _{t}^2 u_{+}^{0}|_{\Gamma }\nonumber \\{} & {} +\left( \frac{-2d f^2(t)k_-^2 \alpha _+ \alpha _-^2 +2d(d+f(t))f(t) k_-^2\alpha _-^2 }{2f(t) \alpha _+ \alpha _-} \right. \nonumber \\ {}{} & {} +\left. \frac{ -[k_m^2+d^2k_-^2+(d+f(t))^2k_+^2]f(t) \alpha _+ \alpha _- +2(d+f(t)) k_m^2 \alpha _- }{2f(t) \alpha _+ \alpha _-} \right) u_{+}^{0}|_{\Gamma } \nonumber \\{} & {} +\frac{f(t) \alpha _+^2 \alpha _- - (d+f(t))\alpha _+ \alpha _- +(d+f(t)) \alpha _-}{\alpha _+ \alpha _-} f'(t) \partial _t u_{+}^{0}|_{\Gamma }. \end{aligned}$$
(A13)

Then

$$\begin{aligned} u_{+}^{2}|_{\Gamma }&-u_{-}^{2}|_{\Gamma } =\frac{f(t)\alpha _{+}\alpha _{-}+d\alpha _{+}-(d+f(t))\alpha _{-}}{2\alpha _{+}\alpha _{-}}\left( \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}} }u_{-}^{1}|_{\Gamma }\right) \nonumber \\&+\left( \frac{\left( -2f^{2}(t)f^{\prime 2}(t)-f^{3}(t)\right) \alpha _{+}\alpha _{-}+\left( d-d^{2}f(t)-df^{2}(t)\right) \alpha _{+}}{4f(t)\alpha _{+}\alpha _{-}}\right. \nonumber \\&\left. -\frac{\left( d+f(t)+d^{2}f(t)+df^{2}(t)\right) \alpha _{-} }{4f(t)\alpha _{+}\alpha _{-}}\right) c(t)\left( \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma }\right) \nonumber \\&+\left( \frac{-(d+f(t))f^{2}(t)\alpha _{+}^{2}\alpha _{-}-df^{2}(t)\alpha _{+}\alpha _{-}^{2}-df(t)(d+f(t))(\alpha _{+}^{2}-\alpha _{-}^{2})}{4f(t)\alpha _{+}\alpha _{-}}\right. \nonumber \\&+\left. \frac{d\alpha _{+}+(d+f(t))\alpha _{-}}{4f(t)\alpha _{+}\alpha _{-} }\right) \left( \partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\partial _{t}^{2} u_{-}^{0}|_{\Gamma }\right) \nonumber \\&+\left( \frac{-(d+f(t))f^{2}(t)k_{+}^{2}\alpha _{+}^{2}\alpha _{-} -df^{2}(t)k_{-}^{2}\alpha _{+}\alpha _{-}^{2}+(d+f(t))k_{m}^{2}\alpha _{-} }{4f(t)\alpha _{+}\alpha _{-}}\right. \nonumber \\&+\left. \frac{dk_{m}^{2}\alpha _{+}-d(d+f(t))f(t)(k_{+}^{2}\alpha _{+} ^{2}-k_{-}^{2}\alpha _{-}^{2})}{4f(t)\alpha _{+}\alpha _{-}}\right) \left( u_{+}^{0}|_{\Gamma }+u_{-}^{0}|_{\Gamma }\right) \nonumber \\&+\frac{f(t)\alpha _{+}^{2}\alpha _{-}-d\alpha _{+}^{2}-d\alpha _{+}\alpha _{-}+d\alpha _{+}+(d+f(t))\alpha _{-}}{4\alpha _{+}\alpha _{-}}f^{\prime }(t)\left( \partial _{t}u_{+}^{0}|_{\Gamma }+\partial _{t}u_{-}^{0}|_{\Gamma }\right) . \end{aligned}$$
(A14)

Equations (32) et (33) implie that, \(\forall (t,s)\in \Omega _{m,\beta },\)

$$\begin{aligned} \partial _{s}U_{m,1}^{3}(t,s)= & {} \left[ c^{2}(t)\partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }+c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+c(t)k_{-}^{2}u_{-}^{0}|_{\Gamma }-k_{-}^{2}\left( \partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) -\partial _{t}^{2}\left( \partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) \right] \frac{s^{2}}{2} \\{} & {} +\left[ c^{2}(t)\left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) +2c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+c^{\prime }(t)\partial _{t}u_{-}^{0}|_{\Gamma }\right] \frac{s^{2}}{2} \\{} & {} +\left( -\partial _{t}^{2}u_{-}^{1}|_{\Gamma }-k_{-}^{2}u_{-}^{1}|_{\Gamma }-c\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }\right) s+\partial _{s}U_{m,1}^{3}\left( t,0\right) ,\\ \partial _{s}U_{m,2}^{3}(t,s)= & {} -\dfrac{c(t)}{f(t)}\left[ -c(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\partial _{t}^{2}u_{+} ^{0}|_{\Gamma }-k_{m}^{2}u_{-}^{0}|_{\Gamma }\right] \left( \frac{1}{2}s^{2}-s+\frac{1}{2}\right) \\{} & {} \quad +\left[ f^{\prime }(t)f^{-1}(t)\partial _{t}\left( \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right) 2-\partial _{t}^{2}\left[ \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }\right] \right. \\{} & {} \quad \left. -f^{\prime 2}(t)f^{-2}(t)\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }2+f^{\prime \prime }(t)f^{-1}(t)\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right. \\{} & {} \quad \left. +c^{2}(t)\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}} u_{+}^{0}|_{\Gamma }+c(t)f(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }2\right. \\{} & {} \quad \left. -f(t)c^{\prime }(t)\partial _{t}u_{+}^{0}|_{\Gamma }-k_{m}^{2}\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right] \left( \frac{1}{2}s^{2}-\frac{1}{2}\right) \\{} & {} \quad +\left[ dc^{2}f^{-1}(t)\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }-\partial _{t}^{2}u_{+}^{1}|_{\Gamma }-\partial _{t} ^{2}\left[ \left( d+f(t)-f(t)\alpha _{+}\right) \partial _{{\textbf{n}}} u_{+}^{0}|_{\Gamma }\right] \right. \\{} & {} \quad \left. -c(t)\alpha _{+}\partial _{n}u_{+}^{1}|_{\Gamma }-c(t)(d+f(t))\alpha _{+}\partial _{n}^{2}u_{+}^{0}|_{\Gamma }\right. \\{} & {} \quad \left. +c(t)f^{\prime }(t)\alpha _{+}\partial _{t}u_{+}^{0}|_{\Gamma }-c(t)f^{\prime }(t)\partial _{t}u_{+}^{0}|_{\Gamma }+2dc(t)\partial _{t}^{2} u_{+}^{0}|_{\Gamma }\right. \\{} & {} \quad \left. -k_{m}^{2}u_{+}^{1}|_{\Gamma }-k_{m}^{2}\left( d+f(t)-f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-dc^{\prime } (t)\partial _{t}u_{+}^{0}|_{\Gamma }\right] \left( s-1\right) \\{} & {} \quad +\partial _{s}U_{m,2}^{3}(t,1) \end{aligned}$$

From Condition (27) at order 2, we get

$$\begin{aligned} \partial _{s}U_{m,1}^{3}(t,s)= & {} \left[ c^{2}(t)\partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }+c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+c(t)k_{-}^{2}u_{-}^{0}|_{\Gamma }-k_{-}^{2}\left( \partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) -\partial _{t}^{2}\left( \partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) \right] \frac{s^{2}}{2} \\{} & {} +\left[ c^{2}(t)\left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) +2c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+c^{\prime }(t)\partial _{t}u_{-}^{0}|_{\Gamma }\right] \frac{s^{2}}{2} \\{} & {} +\left( -\partial _{t}^{2}u_{-}^{1}|_{\Gamma }-k_{-}^{2}u_{-}^{1}|_{\Gamma }-c(t)\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }\right) s+\partial _{{\textbf{n}} }u_{-}^{2}|_{\Gamma }, \end{aligned}$$

It follows from Transmission conditions (26) at order 2

$$\begin{aligned}&\frac{d^{2}}{2}\alpha _{-}c^{2}(t)\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma } +\frac{d^{2}}{2}\alpha _{-}c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+\frac{d^{2}}{2}\alpha _{-}c(t)k_{-}^{2}u_{-}^{0}|_{\Gamma }-\frac{d^{2}}{2}\alpha _{-}k_{-} ^{2}\left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) \nonumber \\&\qquad -\frac{d^{2}}{2}\alpha _{-}\partial _{t}^{2}\left( \partial _{{\textbf{n}}} u_{-}^{0}|_{\Gamma }\right) +\frac{d^{2}}{2}\alpha _{-}c^{2}(t)\left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) +d^{2}\alpha _{-} c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+\frac{d^{2}}{2}\alpha _{-}c^{\prime }(t)\partial _{t}u_{-}^{0}|_{\Gamma }\nonumber \\&\qquad -d\alpha _{-}\partial _{t}^{2}u_{-}^{1}|_{\Gamma }-d\alpha _{-}k_{-}^{2} u_{-}^{1}|_{\Gamma }-d\alpha _{-}c(t)\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{2}|_{\Gamma }\nonumber \\&\quad =\frac{c^{2}(t)}{2f^{2}(t)}\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\frac{c(t)}{2f^{2}(t)}\partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\frac{c(t)}{2f^{2}(t)} k_{m}^{2}u_{-}^{0}|_{\Gamma }\nonumber \\&\qquad -f^{\prime }(t)f^{-2}(t)\partial _{t}\left( \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right) +\frac{1}{2}\frac{1}{f(t)}\partial _{t}^{2}\left[ \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right] \nonumber \\&\qquad +f^{\prime 2}(t)f^{-3}(t)\left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{1}{2}f^{\prime \prime } (t)f^{-1}(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{1}{2}c^{2}(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&-c(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\frac{1}{2}c^{\prime } (t)\partial _{t}u_{+}^{0}|_{\Gamma }+\frac{1}{2}k_{m}^{2}\alpha _{+} \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -dc^{2}(t)f^{-1}(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\frac{1}{f(t)}\partial _{t}^{2}u_{+}^{1}|_{\Gamma }+\frac{1}{f(t)}\partial _{t}^{2}\left[ \left( d+f(t)-f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right] \nonumber \\&\qquad +\frac{1}{f(t)}c(t)\alpha _{+}\partial _{n}u_{+}^{1}|_{\Gamma }+\frac{1}{f(t)}c(t)\left( d+f(t)\right) \alpha _{+}\partial _{n}^{2}u_{+}^{0}|_{\Gamma }-\frac{1}{f(t)}c(t)f^{\prime }(t)\alpha _{+}\partial _{t}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad +\frac{1}{f(t)}c(t)f^{\prime }(t)\partial _{t}u_{+}^{0}|_{\Gamma }-\frac{1}{f(t)}2dc(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }+k_{m}^{2}\left( d+f(t)-f(t)\alpha _{+}\right) \frac{1}{f(t)}\partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }\nonumber \\&\qquad +\frac{1}{f(t)}k_{m}^{2}u_{+}^{1}|_{\Gamma }+\frac{1}{f(t)}dc^{\prime } (t)\partial _{t}u_{+}^{0}|_{\Gamma }+\frac{1}{f(t)}\partial _{s}U_{m,2} ^{3}(t,1). \end{aligned}$$
(A15)

Now calculate the term \(\partial _{s}U_{m,2}^{3}(t,1)\) in (A15). From (25) at order 2, we have

$$\begin{aligned}&\frac{1}{f(t)}\partial _{s}U_{m,2}^{3}(t,1) \nonumber \\&\quad =\left( f^{\prime }(t)\right) ^{2}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+2c(t)f^{\prime }(t)(d+f(t))\left( \alpha _{+}-1\right) \partial _{t}u_{+}^{0}|_{\Gamma } \nonumber \\&\qquad + \alpha _{+}\partial _{n}u_{+}^{2}|_{\Gamma }+\left( 1-\alpha _{+}\right) f^{\prime }(t)\partial _{t}u_{+}^{1}|_{\Gamma }+f^{\prime }(t)\left( d+f(t)\right) \left( 1-\alpha _{+}\right) \partial _{t}\partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma } \nonumber \\&\qquad +\frac{(d+f(t))^{2}}{2}\alpha _{+}\partial _{n}^{3}u_{+}^{0}|_{\Gamma }+(d+f(t))\alpha _{+}\partial _{n}^{2}u_{+}^{1}|_{\Gamma }. \end{aligned}$$
(A16)

Recall that

$$\begin{aligned} \Delta u_{+}^{n}+k_{+}^{2}u_{+}^{n}=\dfrac{-\eta c^{\prime }(t)}{\left[ 1+\eta c(t)\right] ^{3}}\partial _{t}u_{+}^{n}+\frac{1}{\left[ 1+\eta c(t) \right] ^{2}}\partial _{t}^{2}u_{+}^{n}+\dfrac{c(t)}{1+\eta c(t)}\partial _{\eta }u_{+}^{n}+\partial _{\eta }^{2}u_{+}^{n}+k_{+}^{2}u_{+}^{n}=0. \end{aligned}$$

The partial derivative with respect to \(\eta \) leads to

$$\begin{aligned}&\dfrac{-c^{\prime }(t)\left[ 1+\eta c(t)\right] ^{3}+3c(t)\left[ 1+\eta c(t)\right] ^{2}\eta c^{\prime }(t)}{\left[ 1+\eta c(t)\right] ^{6}} \partial _{t}u_{+}^{n}+\dfrac{\eta c^{\prime }(t)}{\left[ 1+\eta c(t)\right] ^{3}}\partial _{\eta }\partial _{t}u_{+}^{n}\\&\quad -\frac{2c(t)}{\left[ 1+\eta c(t)\right] ^{3}}\partial _{t}^{2}u_{+}^{n} +\frac{1}{\left[ 1+\eta c(t)\right] ^{2}}\partial _{\eta }\partial _{t} ^{2}u_{+}^{n}-\dfrac{c^{2}(t)}{\left[ 1+\eta c(t)\right] ^{2}}\partial _{\eta }u_{+}^{n}\\&\quad +\dfrac{c(t)}{1+\eta c(t)}\partial _{\eta }^{2}u_{+}^{n}+\partial _{\eta } ^{3}u_{+}^{n}+k_{+}^{2}\partial _{\eta }u_{+}^{n} =0. \end{aligned}$$

Taking the limit \(\eta \rightarrow 0\), we obtain

$$\begin{aligned}&-c^{\prime }(t)\partial _{t}u_{+}^{n}|_{\Gamma }-2c(t)\partial _{t}^{2}u_{+} ^{n}|_{\Gamma }+\partial _{{\textbf{n}}}\partial _{t}^{2}u_{+}^{n}|_{\Gamma } -c^{2}(t)\partial _{{\textbf{n}}}u_{+}^{n}|_{\Gamma }\\&+c(t)\partial _{{\textbf{n}}}^{2}u_{+}^{n}|_{\Gamma }+\partial _{{\textbf{n}}} ^{3}u_{+}^{n}|_{\Gamma }+k_{+}^{2}\partial _{{\textbf{n}}}u_{+}^{n}|_{\Gamma } =0, \end{aligned}$$

hence

$$\begin{aligned} \partial _{{\textbf{n}}}^{3}u_{+}^{n}|_{\Gamma }&=c^{\prime }(t)\partial _{t}u_{+}^{n}|_{\Gamma }+2c(t)\partial _{t}^{2}u_{+}^{n}|_{\Gamma }-\partial _{n}\partial _{t}^{2}u_{+}^{n}|_{\Gamma }\nonumber \\&\quad +c^{2}(t)\partial _{{\textbf{n}}}u_{+}^{n}|_{\Gamma }-c(t)\partial _{{\textbf{n}} }^{2}u_{+}^{n}|_{\Gamma }-k^{2}\partial _{{\textbf{n}}}u_{+}^{n}|_{\Gamma }. \end{aligned}$$
(A17)

Using Identity (A7), Relation (A17) becomes

$$\begin{aligned} \partial _{{\textbf{n}}}^{3}u_{+}^{n}|_{\Gamma }= & {} 3c(t)\partial _{t}^{2}u_{+}^{n}|_{\Gamma }+\left( 2c^{2}(t)-k_{+}^{2}\right) \partial _{ {\textbf{n}}}u_{+}^{n}|_{\Gamma }+c^{\prime }(t)\partial _{t}u_{+}^{n}|_{\Gamma } \nonumber \\{} & {} -\partial _{{\textbf{n}}}\partial _{t}^{2}u_{+}^{n}|_{\Gamma }+c(t)k_{+}^{2}u_{+}^{n}|_{\Gamma },\ \forall n\ge 0. \end{aligned}$$
(A18)

Therefore, using (A18) for \(n=0\) and (A7) for \(n\in \left\{ 0,1\right\} \), Relation (A16) leads to

$$\begin{aligned} \frac{1}{f(t)}\partial _{s}U_{m,2}^{3}(t,1)&=\left( f^{\prime }(t)\right) ^{2}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+2c(t)f^{\prime }(t)(d+f(t))\left( \alpha _{+}-1\right) \partial _{t}u_{+}^{0}|_{\Gamma }\nonumber \\&\quad +\frac{(d+f(t))^{2}}{2}\alpha _{+}c^{\prime }(t)\partial _{t}u_{+} ^{0}|_{\Gamma }+\alpha _{+}\partial _{n}u_{+}^{2}|_{\Gamma }+\left( 1-\alpha _{+}\right) f^{\prime }(t)\partial _{t}u_{+}^{1}|_{\Gamma }\nonumber \\&\quad +f^{\prime }(t)\left( d+f(t)\right) \left( 1-\alpha _{+}\right) \partial _{t}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-(d+f(t))\alpha _{+}\partial _{t}^{2}u_{+}^{1}|_{\Gamma }\nonumber \\&\quad -(d+f(t))\alpha _{+}c(t)\partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }-(d+f(t))\alpha _{+}k_{+}^{2}u_{+}^{1}|_{\Gamma }\nonumber \\&\quad +\frac{(d+f(t))^{2}}{2}\alpha _{+}3c(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\frac{(d+f(t))^{2}}{2}\alpha _{+}\left( 2c^{2}(t)-k_{+}^{2}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&\quad -\frac{(d+f(t))^{2}}{2}\alpha _{+}\partial _{{\textbf{n}}}\partial _{t}^{2} u_{+}^{0}|_{\Gamma }+\frac{(d+f(t))^{2}}{2}\alpha _{+}c(t)k_{+}^{2}u_{+} ^{0}|_{\Gamma } \end{aligned}$$
(A19)

So (A15) becomes

$$\begin{aligned}&\alpha _{+}\partial _{n}u_{+}^{2}|_{\Gamma }\nonumber \\&\quad =\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{2}|_{\Gamma }-\frac{1}{f(t)} c(t)\alpha _{+}\partial _{n}u_{+}^{1}|_{\Gamma }+(d+f(t))\alpha _{+} c(t)\partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }-d\alpha _{-}c(t)\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }\nonumber \\&\qquad -\left( 1-\alpha _{+}\right) f^{\prime }(t)\partial _{t}u_{+}^{1}|_{\Gamma }-\frac{1}{f(t)}k_{m}^{2}u_{+}^{1}|_{\Gamma }+(d+f(t))\alpha _{+}k_{+}^{2} u_{+}^{1}|_{\Gamma }-d\alpha _{-}k_{-}^{2}u_{-}^{1}|_{\Gamma }\nonumber \\&\qquad -\frac{1}{f(t)}\partial _{t}^{2}u_{+}^{1}|_{\Gamma }+(d+f(t))\alpha _{+}\partial _{t}^{2}u_{+}^{1}|_{\Gamma }-d\alpha _{-}\partial _{t}^{2}u_{-} ^{1}|_{\Gamma }+\frac{d^{2}}{2}\alpha _{-}c^{2}(t)\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma }\nonumber \\&\qquad +\frac{d^{2}}{2}\alpha _{-}c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma } +\frac{d^{2}}{2}\alpha _{-}c(t)k_{-}^{2}u_{-}^{0}|_{\Gamma }-\frac{d^{2}}{2}\alpha _{-}k_{-}^{2}\left( \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) -\frac{d^{2}}{2}\alpha _{-}\partial _{t}^{2}\left( \partial _{{\textbf{n}}} u_{-}^{0}|_{\Gamma }\right) \nonumber \\&\qquad +\frac{d^{2}}{2}\alpha _{-}c^{2}(t)\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }+d^{2}\alpha _{-}c(t)\partial _{t}^{2}u_{-}^{0}|_{\Gamma }+\frac{d^{2}}{2} \alpha _{-}c^{\prime }(t)\partial _{t}u_{-}^{0}|_{\Gamma }-\frac{1}{2f^{2} (t)}c^{2}(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -\frac{c(t)}{2f^{2}(t)}\partial _{t}^{2}u_{+}^{0}|_{\Gamma }-\frac{c(t)}{2f^{2}(t)}k_{m}^{2}u_{-}^{0}|_{\Gamma }+\frac{1}{f^{2}(t)}f^{\prime }(t)\partial _{t}\left( \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }\right) -\frac{f^{\prime 2}(t)}{f^{2}(t)}\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -\frac{1}{2}\frac{1}{f(t)}\partial _{t}^{2}\left[ \left( f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right] +\frac{1}{2}\frac{f^{\prime \prime }(t)}{f(t)}\alpha _{+}\partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }+\frac{1}{2}c^{2}(t)\alpha _{+}\partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }\nonumber \\&\qquad +c(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }-\frac{1}{2}c^{\prime } (t)\partial _{t}u_{+}^{0}|_{\Gamma }-\frac{1}{2}k_{m}^{2}\alpha _{+} \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+dc^{2}(t)\frac{1}{f(t)}\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -\frac{1}{f(t)}\partial _{t}^{2}\left[ \left( d+f(t)-f(t)\alpha _{+}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }\right] +\frac{1}{f(t)}c(t)\left( d+f(t)\right) \alpha _{+}\partial _{t}^{2}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad +\frac{1}{f(t)}c^{2}(t)\left( d+f(t)\right) \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\frac{1}{f(t)}c(t)\left( d+f(t)\right) \alpha _{+}k_{+}^{2}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad +\frac{1}{f(t)}c(t)f^{\prime }(t)\alpha _{+}\partial _{t}u_{+}^{0}|_{\Gamma }-\frac{1}{f(t)}c(t)f^{\prime }(t)\partial _{t}u_{+}^{0}|_{\Gamma }+\frac{1}{f(t)}2dc(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -k_{m}^{2}\left( d+f(t)-f(t)\alpha _{+}\right) \frac{1}{f(t)} \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{1}{f(t)}dc^{\prime } (t)\partial _{t}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -\left( f^{\prime }(t)\right) ^{2}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-2c(t)f^{\prime }(t)(d+f(t))\left( \alpha _{+}-1\right) \partial _{t}u_{+} ^{0}|_{\Gamma }-\frac{(d+f(t))^{2}}{2}\alpha _{+}c^{\prime }(t)\partial _{t} u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -f^{\prime }(t)\left( d+f(t)\right) \left( 1-\alpha _{+}\right) \partial _{t}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{(d+f(t))^{2}}{2}\alpha _{+}3c(t)\partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\frac{(d+f(t))^{2}}{2}\alpha _{+}\partial _{{\textbf{n}}}\partial _{t}^{2}u_{+}^{0}|_{\Gamma }\nonumber \\&\qquad -\frac{(d+f(t))^{2}}{2}\alpha _{+}\left( 2c^{2}(t)-k_{+}^{2}\right) \partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }-\frac{(d+f(t))^{2}}{2}\alpha _{+}c(t)k_{+}^{2}u_{+}^{0}|_{\Gamma } \end{aligned}$$
(A20)

Using again Transmission conditions (A1), (A2), (A3) and (A6), we obtain

$$\begin{aligned}&\alpha _{+}\partial _{n}u_{+}^{2}|_{\Gamma }=\alpha _{-}\partial _{{\textbf{n}} }u_{-}^{2}|_{\Gamma }-{\mathcal {M}}-\frac{1}{2}\left[ \frac{d^{2}}{2}k_{-} ^{2}-d^{2}c^{2}(t)+\frac{1}{f^{2}(t)}f^{\prime 2}(t)-\frac{1}{2}c^{2} (t)\right. \\&+\left. \frac{1}{2}k_{m}^{2}\frac{1}{f(t)}\left( \frac{\left( f^{\prime \prime }(t)-f^{\prime \prime }(t)\alpha _{+}\right) }{\alpha _{+} }\right) -dc^{2}(t)\frac{1}{f(t)}+\frac{\left( f^{\prime }(t)\right) ^{2} }{\alpha _{+}}\right. \\&+\frac{(d+f(t))^{2}}{2}\left( 2c^{2}(t)-k_{+}^{2}\right) +k_{m}^{2}\left( \frac{d+f(t)-f(t)\alpha _{+}}{\alpha _{+}}\right) \frac{1}{f(t)}\\&+\left. -\frac{1}{f(t)}c^{2}(t)\left( d+f(t)\right) +\frac{c^{2} (t)}{2f^{2}(t)}-\frac{\left( f^{\prime }(t)\right) ^{2}}{f^{2}(t)}\right] \left( \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-} \partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) \\&+\frac{1}{2}\left[ \frac{d^{2}}{2}\alpha _{-}c(t)k_{-}^{2}-\frac{c(t)}{2f^{2}(t) }k_{m}^{2}+\frac{1}{f(t)}c(t)\left( d+f(t)\right) \alpha _{+}k_{+}^{2} -\frac{(d+f(t))^{2}}{2}\alpha _{+}c(t)k_{+}^{2}\right] \\&\left( u_{+} ^{0}|_{\Gamma }+u_{-}^{0}|_{\Gamma }\right) \\&+\left[ \frac{d^{2}}{4}\alpha _{-}c^{\prime }(t)-\frac{1}{4}c^{\prime }(t)-\frac{1}{2f(t)}c(t)f^{\prime }(t)-c(t)f^{\prime }(t)(d+f(t))\left( \alpha _{+}-1\right) \right. \\&+\left. \frac{1}{2f(t)}c(t)f^{\prime }(t)\alpha _{+}-\frac{(d+f(t))^{2}}{4}\alpha _{+}c^{\prime }(t)-\frac{1}{2}\frac{1}{f(t)}dc^{\prime }(t)\right] \left( \partial _{t}u_{+}^{0}|_{\Gamma }+\partial _{t}u_{-}^{0}|_{\Gamma }\right) \\&+\frac{1}{2}\left[ \frac{c(t)}{2f^{2}(t)}-\frac{1}{f(t)}c(t)\left( d+f(t)\right) \alpha _{+}-c(t)-\frac{1}{f(t)}2dc(t)\right. \\&+\left. \frac{(d+f(t))^{2}}{2}\alpha _{+}3c(t)-\frac{3d^{2}}{2}\alpha _{-}c(t)\right] \left( \partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\partial _{t} ^{2}u_{-}^{0}|_{\Gamma }\right) \\&+\frac{1}{2}\left[ \frac{(d+f(t))^{2}}{2}-\frac{d^{2}}{2}-\frac{1}{2} -\frac{1}{f(t)}\left( \frac{d+f(t)-f(t)\alpha _{+}}{\alpha _{+}}\right) \right] \\&\left( \alpha _{+}\partial _{t}^{2}\partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }+\partial _{t}^{2}\alpha _{-}\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma }\right) \\&+\frac{1}{2}\left[ -2\frac{1}{f(t)}\left( \frac{\left( f^{\prime }(t)-f^{\prime }(t)\alpha _{+}\right) }{\alpha _{+}}\right) -\frac{f^{\prime }(t)\left( d+f(t)\right) \left( 1-\alpha _{+}\right) }{\alpha _{+}}\right] \\&\left( \alpha _{+}\partial _{t}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }++\partial _{t}\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) , \end{aligned}$$

where

$$\begin{aligned}&{\mathcal {M}}=\frac{1}{2}\left( \frac{1}{f(t)}-f(t)\right) c(t)\left( \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{1}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{1}|_{\Gamma }\right) \\&+\frac{1}{2}\left( \frac{1}{f(t)}k_{m}^{2}-(d+f(t))\alpha _{+}k_{+} ^{2}+d\alpha _{-}k_{-}^{2}\right) \left( u_{+}^{1}|_{\Gamma }+u_{-} ^{1}|_{\Gamma }\right) \\&+\frac{1}{2}\left( 1-\alpha _{+}\right) f^{\prime }(t)\left( \partial _{t}u_{+}^{1}|_{\Gamma }+\partial _{t}u_{-}^{1}|_{\Gamma }\right) +\frac{1}{2}\left( \frac{1}{f(t)}-(d+f(t))\alpha _{+}+d\alpha _{-}\right) \\&\left( \partial _{t}^{2}u_{+}^{1}|_{\Gamma }+\partial _{t}^{2}u_{-}^{1}|_{\Gamma }\right) \\&+\frac{1}{2}\left( \frac{1}{f(t)}-f(t)\right) c(t)\left[ \dfrac{(d+f(t))f(t)\alpha _{+}-df(t)\alpha _{-}-1}{2f(t)}\left( \partial _{t}^{2} u_{+}^{0}|_{\Gamma }+\partial _{t}^{2}u_{-}^{0}|_{\Gamma }\right) \right. \\&+\left. \dfrac{(d+f(t))f(t)k_{+}^{2}\alpha _{+}-df(t)k_{-}^{2}\alpha _{-}-k_{m}^{2}}{2f(t)}\left( u_{+}^{0}|_{\Gamma }+u_{-}^{0}|_{\Gamma }\right) \right. \\&+\left. \dfrac{c(t)(f^{2}(t)-1)}{2f(t)}\left( \alpha _{+}\partial _{n} u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{n}u_{-}^{0}|_{\Gamma }\right) +\dfrac{f^{\prime }(t)(\alpha _{+}-1)}{2}\left( \partial _{t}u_{+}^{0}|_{\Gamma }+\partial _{t}u_{-}^{0}|_{\Gamma }\right) \right] \\&-dc(t)\dfrac{(d+f(t))f(t)\alpha _{+}-df(t)\alpha _{-}-1}{2f(t)}\left( \partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\partial _{t}^{2}u_{-}^{0}|_{\Gamma }\right) \\&-dc(t)\dfrac{(d+f(t))f(t)k_{+}^{2}\alpha _{+}-df(t)k_{-}^{2}\alpha _{-} -k_{m}^{2}}{2f(t)}\left( u_{+}^{0}|_{\Gamma }+u_{-}^{0}|_{\Gamma }\right) \\&-dc^{2}(t)\dfrac{(f^{2}(t)-1)}{2f(t)}\left( \alpha _{+}\partial _{n}u_{+} ^{0}|_{\Gamma }+\alpha _{-}\partial _{n}u_{-}^{0}|_{\Gamma }\right) -dc(t)\dfrac{f^{\prime }(t)(\alpha _{+}-1)}{2}\left( \partial _{t}u_{+} ^{0}|_{\Gamma }+\partial _{t}u_{-}^{0}|_{\Gamma }\right) \\&+\left( \frac{k_{m}^{2}-(d+f(t))f(t)\alpha _{+}k_{+}^{2}-f(t)d\alpha _{-}k_{-}^{2}}{f(t)}\right) \left( \dfrac{f(t)\alpha _{+}\alpha _{-}-(d+f(t))\alpha _{-}+d\alpha _{+} }{4\alpha _{+}\alpha _{-}}\right) \\ {}&(\alpha _{+}\partial _{{\textbf{n}}}u_{+} ^{0}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }) +\left( 1-\alpha _{+}\right) f^{\prime }(t)\left( \dfrac{f^{\prime }(t)\alpha _{+}\alpha _{-}-f^{\prime }(t)\alpha _{-}}{4\alpha _{+}\alpha _{-} }\right) (\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma })\\&+\left( 1-\alpha _{+}\right) f^{\prime }(t)\dfrac{f(t)\alpha _{+}\alpha _{-}-(d+f(t))\alpha _{-}+d\alpha _{+}}{4\alpha _{+}\alpha _{-}}(\alpha _{+} \partial _{t}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{t}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma })\\&+\left( \frac{1}{f(t)}-(d+f(t))\alpha _{+}-d\alpha _{-}\right) \left[ \left( \dfrac{f^{\prime \prime }(t)\alpha _{+}\alpha _{-}-(f^{\prime \prime }(t))\alpha _{-}}{4\alpha _{+}\alpha _{-}}\right) (\alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma })\right. \\&+\left( \dfrac{f^{\prime }(t)\alpha _{+}\alpha _{-}-f^{\prime }(t)\alpha _{-} }{2\alpha _{+}\alpha _{-}}\right) (\alpha _{+}\partial _{t}\partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{t}\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma })\\&+\left. \dfrac{f(t)\alpha _{+}\alpha _{-}-(d+f(t))\alpha _{-}+d\alpha _{+} }{4\alpha _{+}\alpha _{-}}(\alpha _{+}\partial _{t}^{2}\partial _{{\textbf{n}}} u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{t}^{2}\partial _{{\textbf{n}}}u_{-} ^{0}|_{\Gamma })\right] . \end{aligned}$$

Then

$$\begin{aligned} \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{2}|_{\Gamma }-\alpha _{-}\partial _{n}u_{-}^{2}|_{\Gamma }= & {} \vartheta _{1}\left( \alpha _{+}\partial _{ {\textbf{n}}}u_{+}^{1}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}} }u_{-}^{1}\right) +\vartheta _{2}\left( u_{+}^{1}|_{\Gamma }+u_{-}^{1}|_{\Gamma }\right) \\{} & {} +\vartheta _{3}\left( \partial _{t}u_{+}^{1}|_{\Gamma }+\partial _{t}u_{-}^{1}|_{\Gamma }\right) +\vartheta _{4}\left( \partial _{t}^{2}u_{+}^{1}|_{\Gamma }+\partial _{t}^{2}u_{-}^{1}|_{\Gamma }\right) \\{} & {} +\vartheta _{5}\left( \partial _{t}^{2}u_{+}^{0}|_{\Gamma }+\partial _{t}^{2}u_{-}^{0}|_{\Gamma }\right) +\vartheta _{6}\left( \partial _{t}u_{+}^{0}|_{\Gamma }+\partial _{t}u_{-}^{0}|_{\Gamma }\right) \\{} & {} +\vartheta _{7}\left( u_{+}^{0}|_{\Gamma }+u_{-}^{0}|_{\Gamma }\right) +\vartheta _{8}\left( \alpha _{+}\partial _{t}^{2}\partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }+\partial _{t}^{2}\alpha _{-}\partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) \\{} & {} +\vartheta _{9}\left( \alpha _{+}\partial _{t}\partial _{{\textbf{n}} }u_{+}^{0}|_{\Gamma }+\partial _{t}\alpha _{-}\partial _{{\textbf{n}} }u_{-}^{0}|_{\Gamma }\right) \\{} & {} +\vartheta _{10}\left( \alpha _{+}\partial _{{\textbf{n}}}u_{+}^{0}|_{\Gamma }+\alpha _{-}\partial _{{\textbf{n}}}u_{-}^{0}|_{\Gamma }\right) , \end{aligned}$$

where \(\left( \vartheta _{i}\right) _{1\le i\le 10}\) are defined in Sect. 4.2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutarene, K.EG., Galleze, S. & Péron, V. On Ventcel-type transmission conditions for a Helmholtz problem with a non-uniform thin layer. SeMA (2024). https://doi.org/10.1007/s40324-024-00358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-024-00358-4

Keywords

Navigation