Skip to main content
Log in

Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we focus on a class of anisotropic obstacle problems governed by a Leray-Lions operator, involving non-linear elliptic equations with a Hardy potential exhibiting variable growth. Additionally, these problems are equipped by homogeneous Neumann boundary conditions. Using truncation techniques and the monotonicity method, we establish the existence of entropy solutions for the studied problem within the framework of anisotropic weighted Sobolev spaces with a variable exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the references within the article.

References

  1. Abbassi, A., Allalou, C., Kassidi, A.: Anisotropic elliptic nonlinear obstacle problem with weighted variable exponent. J. Math. Study 54(4), 337–356 (2021)

    Article  MathSciNet  Google Scholar 

  2. Abbassi, A., Allalou, C., Kassidi, A.: Existence of entropy solutions for anisotropic elliptic nonlinear problem in weighted Sobolev space. In: Nonlinear Analysis: Problems, Applications and Computational Methods, pp. 102–122. Springer International Publishing, Cham (2020)

    Google Scholar 

  3. Abbassi, A., Allalou, C., Kassidi, A.: Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space. Bol. Soc. Parana. Mat. 40, 1–22 (2022)

    Article  MathSciNet  Google Scholar 

  4. Abbassi, A., Azroul, E., Barbara, A.: Degenerate \(p(x)\)-elliptic equation with second membre in \(L^{1}\). Adv. Sci. Technol. Eng. Syst. J. 2, 45–54 (2017)

    Article  Google Scholar 

  5. Akdim, Y., Azroul, E., Benkirane, A.: Existence of solutions for quasilinear degenerate elliptic equations. Electron. J. Differ. Eq. 2001, 71 (2001)

    MathSciNet  Google Scholar 

  6. Azroul, E., Bouziani, M., Barbara, A.: Existence of entropy solutions for anisotropic quasilinear degenerated elliptic problems with Hardy potential. SeMA J. 78, 475–499 (2021)

    Article  MathSciNet  Google Scholar 

  7. Antontsev, S.N., Rodrigues, F.J.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara 52, 19–36 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An \( L^ 1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 22(2), 241–273 (1995)

    Google Scholar 

  9. Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in \(L^1\). Differ. Integral Eq. 9, 209–212 (1996)

    Google Scholar 

  10. Brezis, H.: Analyse Fonctionnelle. Théorie, Méthodes et Applications. Masson, Paris (1992)

    Google Scholar 

  11. Chrif, M., El Manouni, S.: Anisotropic equations in weighted Sobolev spaces of higher order. Ric. Mat. 58(1), 1–14 (2009)

    Article  MathSciNet  Google Scholar 

  12. Di Fazio, G., Palagachev, D.K., Ragusa, M.A.: Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 166(2), 179–196 (1999)

    Article  MathSciNet  Google Scholar 

  13. Drabek, P., Kufner, A., Mustonen, V.: Pseudo-monotonicity and degenerated or singular elliptic operators. Bull. Aust. Math. Soc. 58(2), 213–221 (1998)

    Article  MathSciNet  Google Scholar 

  14. Drabek, P., Nicolosi, F.: Existence of bounded solutions for some degenerated quasilinear elliptic equations. Ann. Mat. Pura Appl. 165, 217–238 (1993)

    Article  MathSciNet  Google Scholar 

  15. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985)

    Google Scholar 

  16. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Dunod Gauthier-Villars, Paris (1969)

    Google Scholar 

  17. Liu, Y., Davidson, R., Taylor, P.: Investigation of the touch sensitivity of ER uid based tactile display. In: Proceeding of SPIE, Smart Structures and Materials, Smart Structures and Integrated Systems 5764, p. 92–99 (2005)

  18. Mercaldo, A., Peral, I., Perimo, A.: Results for degenerate nonlinear elliptic equations with involving a Hardy potential. J. Dier. Equ. 251(11), 3114–3142 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ragusa, M.A., Zamboni, P.: A potential theoretic inequality. Czechoslov. Math. J. 51(126), 55–65 (2001)

    Article  MathSciNet  Google Scholar 

  20. Ruzicka, M.: Electrorheological Fluids. Modeling and Mathematical Theory. Springer, Berlin (2002)

    Google Scholar 

  21. Sabiry, A., Melliani, S., Kassidi, A.: Certain regularity results of \(p(x)\)-parabolic problems with measure data. Asia Pac. J. Math. 10(1), 1–20 (2023)

    Google Scholar 

  22. Sabiry, A., Zineddaine, G., Melliani, S., Kassidi, A.: Certain regularity results of \(p(x)\)-parabolic problems with measure data. Filomat J. 37(22), 7559–7579 (2023)

    Google Scholar 

Download references

Funding

Non-financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Sabiry.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest with regard to the publication of this paper and that all authors drafted and revised the entire manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Lemma 5

Appendix: Proof of Lemma 5

This section demonstrates that the operator \({\mathcal {G}}_m\) is both coercive and pseudo-monotone.

First of all, \({\mathcal {B}}_m\) is bounded. In fact, thanks to the Hölder’s inequality and by using the (5) we have

$$\begin{aligned}&\vert \langle {\mathcal {B}}_{m}w,v \rangle \vert \le \sum _{i=1}^{N}\int _{\Omega } \big \vert b_{i}(T_{m}(w))\partial _i v \big \vert dz+\varrho \int _{\Omega } \frac{\vert T_{m}(w)\vert ^{q_{0}(z)-1}}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}\vert v \vert dz \nonumber \\&\quad \le \sup _{\vert \sigma \vert \le m}\vert b_{i}(\sigma )\vert \sum _{i=1}^{N} \int _{\Omega } \big \vert \partial _i v \big \vert \nu _i^{\frac{-1}{p_i(z)}} \nu _i^{\frac{1}{p_i(z)}}dz +\varrho \int _{\Omega } \frac{\vert T_{m}(w)\vert ^{q_{0}(z)-1}}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}\vert v \vert dz\nonumber \\&\quad \le C' \Vert v\Vert +\varrho \left( \int _{\Omega }\left( \frac{\vert T_{m}(w)\vert ^{q_0(z)-1}}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}\right) ^{q'_{0}(z)}dz\right) ^{\frac{1}{(q'_{0})^-}}\Vert v\Vert _{q_{0}(z)}\nonumber \\&\quad \le C \Vert v\Vert . \end{aligned}$$
(37)

where C and \(C'\) are constants that depend on m.

It can be easily deduced that \({\mathcal {G}}_m\) is bounded by means the outcome obtained from Eq. (6), applying Hölder’s inequality, and combining it with Eq. (37). Thereafter, to establish the coercivity, let \(w_0\) belongs to \({\mathcal {K}}_\Delta \). Then, for any w in \({\mathcal {K}}_\Delta \), we obtain

$$\begin{aligned}&\Big \vert \langle {\mathcal {A}}_{m}w,w_0\rangle \Big \vert =\Big \vert \sum _{i=1}^{N} \int _{\Omega }\Phi _{i}(w, T_{m}(w), \nabla w) \partial _{i}w_0dz+\frac{1}{m}\int _{\Omega }\vert w\vert ^{q_0(x)-2}w w_0dz \Big \vert \nonumber \\&\quad \le \sum _{i=1}^{N}\left( \int _{\Omega }\vert \Phi _{i}(z, T_{m}(w), \nabla w)\vert ^{p'_{i}(z)}\nu ^{1-p'_{i}(z)}dz\right) ^{\frac{1}{(p'_{i})^-}}\Vert \nu ^{\frac{1}{p_{i}(z)}} \partial _{i}w_0\Vert _{L^{p_i(z)}(\Omega )}\nonumber \\&\qquad +\frac{1}{m}\left( \int _{\Omega }\vert w\vert ^{(q_0(z)-1)q'_{0}(z)}dz \right) ^{\frac{1}{(q^-_{0})'}}\Vert w_0\Vert _{q_0(z)}\nonumber \\&\quad \le \beta \sum _{i=1}^{N}\left( \int _{\Omega }\left( R_{i}^{p'_{i}(z)}+\vert T_{m}(w)\vert ^{p_{i}(z)}+\sum _{i=1}^{N}\nu \vert \partial _{i}w \vert ^{p_{i}(z)}\right) \right) ^{\frac{1}{(p'_{i})^-}}\Vert \partial _{i}w_0\Vert _{L^{p_{i}(z)}(\Omega ,\nu _i)}\nonumber \\&\qquad +\frac{1}{m}\left( \int _{\Omega }\vert w\vert ^{q_0(z)}dz \right) ^{\frac{1}{(q_{0})^-}}\Vert w_0\Vert _{q_0(z)}\le C'\Vert w_0 \Vert . \end{aligned}$$
(38)

According to (6), we obtain

$$\begin{aligned} \Big \vert \langle {\mathcal {A}}_{m}w,w\rangle \Big \vert&\ge \alpha \sum _{i=1}^{N}\int _{\Omega }\big \vert \partial _i w\big \vert ^{p_i(z)} \nu _i(z)dz+\frac{1}{m}\int _{\Omega }\vert w\vert ^{q_0(x)}dz \Big \vert \nonumber \\&\ge \underline{\alpha }\Vert w\Vert , \end{aligned}$$
(39)

with \(\displaystyle \underline{\alpha }=\min (\alpha ,\frac{1}{m})\).

Combining (38) and (39), we have

$$\begin{aligned} \langle {\mathcal {A}}_{m}w,w-w_0 \rangle&=\langle {\mathcal {A}}_{m}w, w \rangle -\langle {\mathcal {A}}_{m}w,w_0 \rangle \\&\ge \underline{\alpha }\sum _{i=0}^{N}\int _{\Omega }\nu \vert \partial _{i}w\vert ^{p_{i}(z)}dz-C_{4}\Vert w_0 \Vert \\&\ge \underline{\alpha }\Vert w \Vert ^{\underline{p}}-C_{4}\Vert w_0 \Vert , \end{aligned}$$

it follows that

$$\begin{aligned} \frac{\langle {\mathcal {A}}_{m}w,w-w_0\rangle }{\Vert w \Vert }\ge \frac{\underline{\alpha }}{\Vert w \Vert }\Vert w \Vert ^{\underline{p}}-\frac{C'}{\Vert w \Vert } \Vert w_0 \Vert \longrightarrow +\infty \text { as } \Vert w \Vert \rightarrow \infty . \end{aligned}$$

Witch implies that

$$\begin{aligned} \frac{\langle {\mathcal {G}}_{m}w,w-w_0\rangle }{\Vert w \Vert }=\frac{\langle {\mathcal {A}}_{m}w,w-w_0\rangle }{\Vert w \Vert }+\frac{\langle {\mathcal {B}}_{m}w,w-w_0\rangle }{\Vert w \Vert }\longrightarrow +\infty \text { as } \Vert w \Vert \rightarrow \infty . \end{aligned}$$

We still need to prove that \({\mathcal {G}}{m}\) is pseudo-monotone. Let \((w_{n})_{n\in {\mathbb {N}}}\) be a sequence in \(W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu })\) satisfying the following condition

$$\begin{aligned} \left\{ \begin{array}{l} w_{n} \rightharpoonup w \qquad \qquad \text { in } \qquad W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu }),\\ {\mathcal {G}}_{m}w_{m}\rightharpoonup \chi _{m} \qquad \textrm{in} \qquad (W^{1,\textbf{p}(z))}(\Omega ,\mathbf {\nu }))^*,\\ \limsup \limits _{n \rightarrow \infty }\langle {\mathcal {G}}_{m}w_{n},w_{n}\rangle \le \langle \chi _{m},w\rangle . \end{array}\right. \end{aligned}$$
(40)

We will show that \(\chi _{m}={\mathcal {G}}_{m}w\) and \(\langle {\mathcal {G}}_{m}w_{n}, w_{n}\rangle \rightarrow \langle \chi _{m}, w\rangle \) as \( n\rightarrow +\infty .\)

With the help of the compact embedding \(W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu }) \hookrightarrow L^{\underline{p}}(\Omega ),\) we obtain \(w_{n}\) converges to w in \(L^{\underline{p}}(\Omega )\) for a subsequence noted again \((w_{n})_{n\in {\mathbb {N}}}.\)

Since \((w_n)_{n\in {\mathbb {N}}}\) is a bounded sequence in \(W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu })\), by (7) it is obvious that the sequence \((\Phi _{i}(z,T_{m}(w_n),\nabla w_n))_{n \in {\mathbb {N}}}\) is bounded in \(L^{p'_{i}(z)}(\Omega ,\nu _i^*)\), which implies the existence of a measurable function \(\Theta _{i}^{m}\in L^{p'_{i}(z)}(\Omega ,\nu _i^*)\) such that

$$\begin{aligned} \Phi _{i}(z,T_{m}(w),\nabla w)\rightharpoonup \Theta _{i}^{m} \qquad in \quad L^{p'_{i}(z)}(\Omega ,\nu _i^{*})\ as \ n \rightarrow \infty . \end{aligned}$$
(41)

We apply the Lebesgue dominated convergence theorem to obtain

$$\begin{aligned} \frac{ \vert T_{m}(w_n)\vert ^{q_{0}(z)-2}T_{m}(w_n)}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}\rightarrow \frac{\vert T_{m}(w)\vert ^{q_{0}(z)-2} T_{m}(w)}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}} \quad in \quad L^{q'_{0}(z)}(\Omega ). \end{aligned}$$
(42)

Also, we have

$$\begin{aligned} \frac{1}{m} \vert w_{n} \vert ^{q_0(z)-2}w_{n}\rightharpoonup \frac{1}{m}\vert w \vert ^{q_0(z)-2}w \ in \ L^{q'_{0}(z)}(\Omega ). \end{aligned}$$
(43)

What is more, as \(\big (b_{i}^m(w_n)\big )_{n\in {\mathbb {N}}}\) is bounded in \(L^{p'_i(z)}(\Omega ,\nu _i^*)\) and \(b_{i}^m(w_n)\longrightarrow b_{i}^m(w)\) a.e. in \(\Omega \), we get

$$\begin{aligned} b_{i}^m(w_n) \rightarrow b_{i}^m(w) \text { strongly in } L^{p'_i(z)}(\Omega ,\nu _i^*) \text { as } n\rightarrow \infty . \end{aligned}$$
(44)

For all \(\nu \in W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu })\), we obtain

$$\begin{aligned} \langle \chi _{m},\varphi \rangle&=\lim _{n \rightarrow \infty } \langle B_{m}w_n,\varphi \rangle \lim _{n \rightarrow \infty }\sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w_n),\nabla w_n)\partial _{i} \varphi dx\nonumber \\&\quad +\lim _{n \rightarrow \infty }\frac{1}{m}\int _{\Omega }\vert w_n \vert ^{q_{0}(z)-2}w_n \varphi dz-\lim _{n\rightarrow \infty }\varrho \int _{\Omega }\frac{\vert T_{m}(w_{n})\vert ^{q_0(z)-2}T_{m}(w_{n})}{\vert z\vert ^{q_{0}(z)}+\frac{1}{m}}\varphi dz\nonumber \\&\quad +\lim _{n \rightarrow \infty }\sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w_{n})\partial _{i}\varphi dz\nonumber \\ {}&=\sum _{i=1}^{N}\int _{\Omega }\Theta _{i}^{m} \partial _{i}\varphi dz+\frac{1}{m}\int _{\Omega }\vert w\vert ^{q_0(z)-2}w \varphi dz\nonumber \\&\quad - \varrho \int _{\Omega }\frac{\vert T_{m}(w)\vert ^{q_{0}-2}T_{m}(w)}{\vert z \vert ^{q_{0}}+\frac{1}{m}}\varphi dz+\lim _{k\rightarrow \infty }\sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w)\partial _{i}\varphi dz. \end{aligned}$$
(45)

From (40) and (45), we have

$$\begin{aligned}&\limsup \limits _{ n \rightarrow \infty }\langle {\mathcal {G}}_{m}(w_{n}),w_{n} \rangle \\ {}&\quad =\limsup \limits _{n \rightarrow \infty }\left\{ \sum _{i=1}^{N}\int _{\Omega } \Phi _{i}(z,T_{m}(w_{n}),\nabla w_{n})\partial _{i}w_{n}dz \right. \\&\qquad \left. +\frac{1}{m}\int _{\Omega }\vert w_n\vert ^{q_{0}(z)}dz-\varrho \int _{\Omega }\frac{\vert T_{m}(w)\vert ^{q_0(z)-2}T_{m}(w)}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}w_n dz +\sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w_{n})\partial _{i}w_n dz \right\} \\&\quad \le \sum _{i=1}^{N}\int _{\Omega }\Theta _{i}^{m}\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert w \vert ^{q_{0}(z)}dz-\varrho \int _{\Omega }\frac{\vert T_{m}(w)\vert ^{q_{0}(z)-2}T_{m}(w)}{\vert z \vert ^{q_{0}(z)}+\frac{1}{m}}wdz \\&\qquad +\sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w)\partial _{i}w dz. \end{aligned}$$

By using (42) and (44), we obtain

$$\begin{aligned} \int _{\Omega }\frac{\vert T_{m}(w_n)\vert ^{q_0(z)-2}T_{m}(w_n)}{\vert z\vert ^{q_0(z)}+\frac{1}{m}}w_n dz \rightarrow \int _{\Omega }\frac{\vert T_{m}(w)\vert ^{q_0(z)-2}T_{m}(w)}{\vert z\vert ^{q_0(z)}+\frac{1}{m}}wdz, \end{aligned}$$
(46)

and

$$\begin{aligned} \sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w_{n})\partial _{i} w_n dz \rightarrow \sum _{i=1}^{N}\int _{\Omega }b_{i}^m(w)\partial _{i} w dz. \end{aligned}$$
(47)

Which implies that

$$\begin{aligned}{} & {} \limsup \limits _{n \rightarrow \infty }\left( \sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w_{n}),\nabla w_{n})\partial _{i}w_{n}dz+\frac{1}{m}\int _{\Omega }\vert w_{n}\vert ^{q_0(z)}dz\right) \nonumber \\{} & {} \quad \le \sum _{i=1}^{N}\int _{\Omega }\Theta _{i}\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert u\vert ^{q_0(z)}dz. \end{aligned}$$
(48)

On the other side, taking into account (8), we get

$$\begin{aligned}{} & {} \sum _{i=1}^{N}\int _{\Omega }(\Phi _{i}(z,T_{m}(w_{n}), \nabla w_{n})-\Phi _{i}(x,T_{m}(w_{n}),\nabla w))(\partial _{i}w_{n}-\partial _{i}w)dz\\{} & {} \quad +\frac{1}{m}\int _{\Omega }(\vert w_{n}\vert ^{q_0(z)-2}w_{n}-\vert w\vert ^{q_0(z)-2}w)(w_{n}-w)dz\ge 0, \end{aligned}$$

hence

$$\begin{aligned}&\sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w),\nabla w)\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert w_n\vert ^{q_0(z)}dz\\&\quad \ge \sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w),\nabla w)\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert w\vert ^{q_0(z)-2}w_n wdz\\&\qquad +\sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w_{k}),\nabla w)(\partial _{i}w_{n}-\partial _{i}w)dz+\frac{1}{m}\int _{\Omega }\vert w \vert ^{q_0(z)-2}w(w_{n}-w)dz. \end{aligned}$$

The Lebesgue dominated convergence theorem implies \( T_{m}(w_n)\longrightarrow T_{m}(w)\) in \(L^{p_{i}(z)}(\Omega ,\nu _i)\), hence \(\Phi _{i}(z,T_{m}(w_n),\nabla w)\) converges to \(\Phi _{i}(z,T_{m}(w),\nabla w)\) in \(L^{p'_{i}(z)}(\Omega ,\nu _i^{*})\), by employing (40) we infer

$$\begin{aligned}&\liminf \limits _{n \rightarrow \infty }\left( \sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w),\nabla w)\partial _{i}wdz+\frac{1}{m}\int _{\Omega } \vert w_n \vert ^{q_0(z)}dz\right) \\&\quad \ge \sum _{i=1}^{N}\int _{\Omega }\Theta _{i}\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert w \vert ^{q_0(z)}dz. \end{aligned}$$

According to (48), we deduce that

$$\begin{aligned}{} & {} \lim _{n \rightarrow \infty }\left( \sum _{i=1}^{N}\int _{\Omega }\Phi _{i}(z,T_{m}(w_n),\nabla w_n)\partial _{i}w_ndz+\frac{1}{m}\int _{\Omega }\vert w_n \vert ^{q_{0}(z)}dz \right) \nonumber \\{} & {} \quad =\sum _{i=1}^{N}\int _{\Omega }\Theta _{i}\partial _{i}wdz+\frac{1}{m}\int _{\Omega }\vert w \vert ^{q_{0}(z)}dz. \end{aligned}$$
(49)

Hence, from (45)–(47), it follows that

$$\begin{aligned} \langle {\mathcal {G}}_{m} w_{n},w_{n} \rangle \rightarrow \langle \chi _{m},w \rangle \ as \ n \rightarrow \infty . \end{aligned}$$

In the sequel, by means (49) we can establish that

$$\begin{aligned}{} & {} \lim _{n \rightarrow +\infty }\left( \sum _{i=1}^{N}\int _{\Omega }(\Phi _{i}(z,T_{m}(w),\nabla w)-\Phi _{i}(z,T_{m}(w),\nabla w))(\partial _{i}w-\partial _{i}w)dz \right. \\ {}{} & {} \quad \left. +\frac{1}{m}\int _{\Omega }(\vert w_{n}\vert ^{q_{0}(z)-2}w_{n}-\vert w \vert ^{q_{0}(z)-2}w)(w_{n}-w)dz\right) =0. \end{aligned}$$

Once again, by Lemma 3, we obtain

$$\begin{aligned} w_n \rightarrow w \quad \text { in } \; W^{1,\textbf{p}(z)}(\Omega ,\mathbf {\nu }) \qquad \text { and } \quad \partial _{i}w_n\rightarrow \partial _{i} w \quad \text { a.e. in }\; \Omega , \end{aligned}$$

which means that

$$\begin{aligned} \Phi _{i}(z,T_{m}(w),\nabla w) \rightharpoonup \Phi _{i}(z,T_{m}(w),\nabla w) \quad \text { in } \; L^{p'_{i}(z)}(\Omega ,\nu _i^{*}) \quad \text { for } \ i=1, \ldots , N, \end{aligned}$$

and it follows from (41) to (43) that \(\chi _{m}={\mathcal {G}}_{m}w\), which conclude the proof of Lemma 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zineddaine, G., Sabiry, A., Melliani, S. et al. Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent. SeMA (2024). https://doi.org/10.1007/s40324-024-00347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-024-00347-7

Keywords

Mathematics Subject Classification

Navigation