Skip to main content
Log in

The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this work, we consider a system of two wave equations coupled by velocities in a one-dimensional space, with one boundary fractional damping. First, we show that the system is strongly asymptotically stable if and only if the coupling parameter b of the two equations is outside a discrete set of exceptional real values. Next, we show that our system is not uniformly stable. Hence, we look for a polynomial decay rate for smooth initial data. Using a frequency domain approach combined with the multiplier method, we prove that the energy decay rate is greatly influenced by the nature of the coupling parameter b, the arithmetic property of the wave propagation speed a and the order of the fractional damping \(\alpha \). Indeed, under the equal speed propagation condition, i.e., \(a=1\), we establish an optimal polynomial energy decay rate of type \(t^{-\frac{2}{{1-\alpha }}}\) if the coupling parameter \(b\notin \pi {\mathbb {Z}}\) and of type \(t^{-\frac{2}{{5-\alpha }}}\) if the coupling parameter \(b\in \pi {\mathbb {Z}}\). Furthermore, when the wave propagates with different speeds, i.e., \(a\not =1\), we prove that, for any rational number \(\sqrt{a}\) and almost all irrational numbers \(\sqrt{a}\), the energy of our system decays polynomially to zero like as \(t^{-\frac{2}{{5-\alpha }}}\). This result still holds if \(a\in {\mathbb {Q}}\), \(\sqrt{a}\notin {\mathbb {Q}}\) and b small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, F., Ghader, M., Wehbe, A., Chitour, Y.: Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities. Commun. Pure Appl. Anal. 18(5), 2789–2818 (2019)

    Article  MathSciNet  Google Scholar 

  2. Akil, M., Wehbe, A.: Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Math. Control Relat. Fields 8, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  3. Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptotic Analysis, pp. 1–60 (2019)

  4. Alabau, F.: Stabilisation frontière indirecte de systèmes faiblement couplés. Comptes Rendus de l’Académie des Sciences Series I Mathematics 328(11), 1015–1020 (1999)

    MATH  Google Scholar 

  5. Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2(2), 127–150 (2002)

    Article  MathSciNet  Google Scholar 

  6. Alabau-Boussouira, F.: Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim. 41(2), 511–541 (2002)

    Article  MathSciNet  Google Scholar 

  7. Alabau-Boussouira, F., Léautaud, M.: Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim. Calc. Var. 18(2), 548–582 (2011)

    Article  MathSciNet  Google Scholar 

  8. Alabau-Boussouira, F., Cannarsa, P., Guglielmi, R.: Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Math. Control Relat. Fields 1(4), 413–436 (2011)

    Article  MathSciNet  Google Scholar 

  9. Alabau-Boussouira, F., Wang, Z., Yu, L.: A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM Control Optim. Calc. Var. 23(2), 721–749 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ammar-Khodja, F., Bader, A.: Stabilizability of systems of one-dimensional wave equations by one internal or boundary control force. SIAM J. Control Optim. 39(6), 1833–1851 (2001)

    Article  MathSciNet  Google Scholar 

  11. Ammari, K., Mehrenberger, M.: Stabilization of coupled systems. Acta Math. Hungar. 123(1–2), 1–10 (2009)

    Article  MathSciNet  Google Scholar 

  12. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(2), 837–852 (1988)

    Article  MathSciNet  Google Scholar 

  13. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  Google Scholar 

  14. Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  Google Scholar 

  15. Bagley, R.L., Torvik, P.J.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294 (1984)

    Article  Google Scholar 

  16. Benaissa, A., Benazzouz, S.: Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Z. Angew. Math. Phys. 68(4), 94 (2017)

    Article  MathSciNet  Google Scholar 

  17. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  18. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Book  Google Scholar 

  19. Bugeaud, Y.: Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, vol. 160. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Cui, Y., Wang, Z.: Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields 6(3), 429–446 (2016)

    Article  MathSciNet  Google Scholar 

  21. Guariglia, E.: Riemann zeta fractional derivative–functional equation and link with primes. Adv. Differ. Equ. 2019(1), 261 (2019)

    Article  MathSciNet  Google Scholar 

  22. Guariglia, E., Silvestrov, S.: A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proc. 1798, 020063 (2017)

    Article  Google Scholar 

  23. Guliyev, V.S., Guliyev, R.V., Omarova, M.N., Ragusa, M.A.: Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete Contin. Dyn. Syst. B 25(2), 671–690 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kapitonov, B.V.: Uniform stabilization and simultaneous exact boundary controllability for a pair of hyperbolic systems. Siber. Math. J. 35(4), 722–734 (1994)

    Article  Google Scholar 

  25. Liu, Z., Rao, B.: Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J. Math. Anal. Appl. 335(2), 860–881 (2007)

    Article  MathSciNet  Google Scholar 

  26. Mainardi, M., Bonetti, E.: The application of real-order derivatives in linear viscoelasticity. In: Progress and Trends in Rheology II, pp. 64–67. Steinkopff (1988)

  27. Mbodje, B.: Wave energy decay under fractional derivative controls. IMA J. Math. Control Inf. 23(2), 237–257 (2006)

    Article  MathSciNet  Google Scholar 

  28. Mbodje, B., Montseny, G.: Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Control 40(2), 378–382 (1995)

    Article  MathSciNet  Google Scholar 

  29. Nadine, N.: Étude de la stabilisation exponentielle et polynomiale de certains systèmes d’équations couplées par des contrôles indirects bornés ou non bornés. Thèse université de Valenciennes (2016)

  30. Park, J.H., Kang, J.R.: Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J. Appl. Math. 76(2), 340–350 (2010)

    Article  MathSciNet  Google Scholar 

  31. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  32. Ragusa, M.A.: Commutators of fractional integral operators on Vanishing–Morrey spaces. J. Glob. Optim. 40(1–3), 361–368 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Ragusa, M.A., Scapellato, A.: Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. Theory Methods Appl. 151, 51–65 (2017)

    Article  MathSciNet  Google Scholar 

  34. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    Article  MathSciNet  Google Scholar 

  35. Russell, D.L.: A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173(2), 339–358 (1993)

    Article  MathSciNet  Google Scholar 

  36. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives. Gordon and Breach, Amsterdam [Engl. Trans. from the Russian] (1993)

  37. Zhang, X., Zuazua, E.: Polynomial decay and control of a \(1-d\) hyperbolic–parabolic coupled system. J. Differ. Equ. 204(2), 380–438 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and useful suggestions. Professor Ali Wehbe would like to thank the Lebanese University for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Wehbe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Notions of stability and theorems used

We introduce here the notions of stability that we encounter in this work.

Definition A.1

Assume that A is the generator of a \(\hbox {C}_0\)-semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on a Hilbert space H. The \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\) is said to be

  1. 1.

    strongly stable if

    $$\begin{aligned} \lim _{t\rightarrow +\infty } \Vert e^{tA}x_0\Vert _{H}=0, \quad \forall \ x_0\in H; \end{aligned}$$
  2. 2.

    exponentially (or uniformly) stable if there exist two positive constants M and \(\epsilon \) such that

    $$\begin{aligned} \Vert e^{tA}x_0\Vert _{H} \le Me^{-\epsilon t}\Vert x_0\Vert _{H}, \quad \forall \ t>0, \ \forall \ x_0\in {H}; \end{aligned}$$
  3. 3.

    polynomially stable if there exist two positive constants C and \(\alpha \) such that

    $$\begin{aligned} \Vert e^{tA}x_0\Vert _{H}\le C t^{-\alpha }\Vert x_0\Vert _{D(A)}, \quad \forall \ t>0, \ \forall \ x_0\in D\left( A\right) . \end{aligned}$$

    In that case, one says that the solutions of (2.5) decay at a rate \(t^{-\alpha }\) (with \(\alpha >0\)). The \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\) is said to be polynomially stable with optimal decay rate \(t^{-\alpha }\) (with \(\alpha >0\)) if it is polynomially stable with decay rate \(t^{-\alpha }\) and for any \(\varepsilon >0\) small enough, there exists solutions of (2.5) which do not decay at a rate \(t^{-(\alpha +\varepsilon )}\).

\(\square \)

To obtain strong stability of the \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\), we mention the theorem of Arendt and Batty in [12].

Theorem A.2

(Arendt and Batty in [12]) Assume that A is the generator of a \(\hbox {C}_0-\)semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on a Hilbert space H. If A has no pure imaginary eigenvalues and \(\sigma \left( A\right) \cap i{\mathbb {R}}\) is countable, where \(\sigma \left( A\right) \) denotes the spectrum of A, then the \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\) is strongly stable.\(\square \)

To obtain polynomial stability of the \(C_0\)-semigroup \(\left( e^{tA}\right) _{t\ge 0}\), we mention the theorem of Borichev and Tomilov in [17].

Theorem A.3

(Borichev–Tomilov in [17]) Assume that A is the generator of a strongly continuous semigroup of contractions \(\left( e^{tA}\right) _{t\ge 0}\) on H. If \( i{\mathbb {R}}\subset \rho (A)\), where \(\rho \left( A\right) \) denotes the resolvent set of A, then for a fixed \(\ell >0\) the following conditions are equivalent

  1. 1.

    \({\sup _{\lambda \in {\mathbb {R}}}\left\| \left( i\lambda I-A\right) ^{-1}\right\| _{{\mathcal {L}}\left( H\right) }=O\left( |\lambda |^\ell \right) ,}\)

  2. 2.

    \({\Vert e^{tA}x_0\Vert _{{\mathcal {H}}} \le \dfrac{C}{t^{{\frac{1}{\ell }}}} \ \Vert x_0\Vert _{D\left( A\right) } \quad \forall \ t>0,\ x_0\in D\left( A\right) },\ \) for some \(C>0.\)

\(\square \)

Appendix B: Integrals used

Lemma B.1

Let \(0<\alpha <1\) and \(\omega (\xi )\in L^2({\mathbb {R}})\). If \(|\xi |\omega (\xi )\in L^2({\mathbb {R}})\), then \({\int _{{\mathbb {R}}}|\xi |^{\frac{2\alpha -1}{2}}\omega (\xi )}d\xi \) is well defined.

Proof

We have

$$\begin{aligned} \left| \int _{{\mathbb {R}}}|\xi |^{\frac{2\alpha -1}{2}}\omega (\xi )d\xi \right| \le 2\int _0^{+\infty }\xi ^{\frac{2\alpha -1}{2}}|\omega (\xi )|d\xi \le 2\int _0^{1}\xi ^{\frac{2\alpha -1}{2}}|\omega (\xi )|d\xi +2\int _1^{+\infty }\xi ^{\frac{2\alpha -1}{2}}|\omega (\xi )|d\xi . \end{aligned}$$

Since \(0<\alpha <1\) and \(\omega (\xi )\in L^2({\mathbb {R}})\), then by using Cauchy-Schwarz inequality, we get

$$\begin{aligned} \int _0^{1}\xi ^{\frac{2\alpha -1}{2}}|\omega (\xi )|d\xi \le \left( \int _0^1 \xi ^{{2\alpha -1}} d\xi \right) ^{\frac{1}{2}} \left( \int _0^1|\omega (\xi )|^2d\xi \right) ^{\frac{1}{2}}\le \frac{1}{2\alpha }\left( \int _0^1|\omega (\xi )|^2d\xi \right) ^{\frac{1}{2}}<+\infty . \end{aligned}$$

On the other hand, since \(0<\alpha <1\) and \(|\xi |\omega (\xi )\in L^2({\mathbb {R}})\), by using Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} \int _1^{+\infty }\xi ^{\frac{2\alpha -1}{2}}|\omega (\xi )|d\xi= & {} \int _1^{+\infty }\xi ^{\frac{2\alpha -3}{2}}\xi |\omega (\xi )|d\xi \le \left( \int _1^{+\infty } \xi ^{2\alpha -3}d\xi \right) ^{\frac{1}{2}}\left( \int _1^{+\infty }|\xi \omega (\xi )|^2d\xi \right) ^{\frac{1}{2}}\\\le & {} \frac{1}{2(1-\alpha )}\left( \int _1^{+\infty }|\xi \omega (\xi )|^2d\xi \right) ^{\frac{1}{2}}<+\infty . \end{aligned}$$

It follows that \({\int _{{\mathbb {R}}}|\xi |^{\frac{2\alpha -1}{2}}\omega (\xi )}\) is well defined. The proof is thus complete. \(\square \)

Lemma B.2

(Lemma 2.1 stated in [16]) Let \(0<\alpha <1,\) \(\eta \ge 0\), and \(\lambda \in {\mathbb {C}}\), such that

$$\begin{aligned} \lambda \in D=\left\{ \lambda \in {\mathbb {C}}\ |\ \text {Re}\left\{ \lambda \right\} +\eta >0\right\} \cup \left\{ \lambda \in {\mathbb {C}}\ |\ \text {Im}\left\{ \lambda \right\} \ne 0\right\} , \end{aligned}$$

then

$$\begin{aligned} \kappa (\alpha ) \int _{{\mathbb {R}}}\frac{ \left| \xi \right| ^{2\alpha -1}}{\xi ^2+\eta +\lambda }d\xi = \left( \lambda +\eta \right) ^{\alpha -1}. \end{aligned}$$

\(\square \)

Lemma B.3

Let \(0<\alpha <1,\) \(\eta \ge 0\), \(f_5\in L^2({\mathbb {R}})\), then the following two integrals

$$\begin{aligned} \mathtt {I}_1(\eta ,\alpha ,f_5)= \gamma \kappa (\alpha ) \int _{{\mathbb {R}}}\frac{|\xi |^{\frac{2\alpha -1}{2}}f_5(\xi )}{1+\eta +\xi ^2}d\xi \ \ \ \text {and}\ \ \ \mathtt {I}_2(\eta ,\alpha )=\gamma \kappa (\alpha ) \int _{{\mathbb {R}}}\frac{|\xi |^{2\alpha -1}}{1+\eta +\xi ^2}d\xi \end{aligned}$$

are well-defined.

Proof

First, \(\mathtt {I}_2(\eta ,\alpha )\) can be written as

$$\begin{aligned} \mathtt {I}_2(\eta ,\alpha )=2\gamma \kappa (\alpha )\int _0^1\frac{\xi ^{2\alpha -1}}{1+\eta +\xi ^2}d\xi +2\gamma \kappa (\alpha )\int _1^{+\infty }\frac{\xi ^{2\alpha -1}}{1+\eta +\xi ^2}d\xi . \end{aligned}$$

We have

$$\begin{aligned} \frac{\xi ^{2\alpha -1}}{1+\eta +\xi ^2}\underset{0}{\sim }\frac{\xi ^{2\alpha -1}}{1+\eta }\quad \text {and}\quad \frac{\xi ^{2\alpha -1}}{1+\eta +\xi ^2}\underset{+\infty }{\sim }\frac{1}{\xi ^{3-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\), then \(\mathtt {I}_2(\eta ,\alpha )\) is well-defined. Now, for \(\mathtt {I}_1(\eta ,\alpha ,f_5)\), using Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} \mathtt {I}_1(\eta ,\alpha ,f_5)\le & {} 2 \gamma \kappa (\alpha )\left( \int _0^{+\infty }\frac{\xi ^{2\alpha -1}}{(1+\eta +\xi ^2)^2}d\xi \right) ^{\frac{1}{2}}\left( \int _{{\mathbb {R}}}\left| f_5(\xi )\right| ^2d\xi \right) ^{\frac{1}{2}} \\\le & {} \sqrt{2\gamma \kappa (\alpha )\mathtt {I}_2(\eta ,\alpha )}\left( \int _{{\mathbb {R}}}\left| f_5(\xi )\right| ^2d\xi \right) ^{\frac{1}{2}}. \end{aligned}$$

Since \(\mathtt {I}_2(\eta ,\alpha )\) is well defined and \(f_5\in L^2({\mathbb {R}})\), then \(\mathtt {I}_1(\eta ,\alpha ,f_5)\) is well-defined. The proof is thus complete. \(\square \)

Lemma B.4

Let \(0<\alpha <1\) and \(f_5\in L^2({\mathbb {R}})\). Assume that (\(\eta >0\) and \(\lambda \in {\mathbb {R}}\)) or (\(\eta =0\) and \(\lambda \in {\mathbb {R}}^{*}\)), then the following integrals

$$\begin{aligned} \mathtt {I}_3(\lambda ,\eta ,\alpha )= & {} \gamma \kappa (\alpha )\int _{{\mathbb {R}}} \frac{|\xi |^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}d\xi ,\quad \\ \mathtt {I}_4(\lambda ,\eta ,\alpha )= & {} \gamma \kappa (\alpha ) \int _{{\mathbb {R}}}\frac{|\xi |^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}d\xi , \\ \mathtt {I}_5(\lambda ,\eta ,\alpha ,f_5)= & {} i\lambda \gamma \kappa (\alpha )\int _{{\mathbb {R}}}\frac{f_5(\xi ) |\xi |^{\frac{2\alpha -1}{2}}}{\lambda ^2+(\xi ^2+\eta )^2}d\xi \quad \text {and}\quad \\ \mathtt {I}_6(\lambda ,\eta ,\alpha ,f_5)= & {} -\gamma \kappa (\alpha )\int _{{\mathbb {R}}} \frac{f_5(\xi )|\xi |^{\frac{2\alpha -1}{2}}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}d\xi . \end{aligned}$$

are well-defined.

Proof

First, we have

$$\begin{aligned} \mathtt {I}_3(\lambda ,\eta ,\alpha )= & {} 2\gamma \kappa (\alpha )\int _{0}^{+\infty }\frac{\xi ^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}d\xi =2\gamma \kappa (\alpha )\int _0^1\frac{\xi ^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}d\xi \\&+2\gamma \kappa (\alpha )\int _1^{+\infty }\frac{\xi ^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}d\xi . \end{aligned}$$

We have

$$\begin{aligned} \frac{\xi ^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}\underset{0}{\sim }\frac{\xi ^{2\alpha -1}}{\lambda ^2+\eta ^2}\quad \text {and}\quad \frac{\xi ^{2\alpha -1}}{\lambda ^2+(\xi ^2+\eta )^2}\underset{+\infty }{\sim }\frac{1}{\xi ^{5-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\), then in both cases where (\(\eta >0\) and \(\lambda \in {\mathbb {R}}\)) or (\(\eta =0\) and \(\lambda \in {\mathbb {R}}^{*}\)), we get that \(\mathtt {I}_3(\lambda ,\eta ,\alpha )\) is well-defined. Next, we have

$$\begin{aligned} \mathtt {I}_4(\lambda ,\eta ,\alpha )= & {} 2\gamma \kappa (\alpha )\int _0^{+\infty }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}d\xi =2\gamma \kappa (\alpha )\int _0^{1}\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}d\xi \\&+2\gamma \kappa (\alpha )\int _1^{+\infty }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}d\xi . \end{aligned}$$

We have

$$\begin{aligned} \frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}\underset{0}{\sim }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+\eta ^2}\quad \text {and}\quad \frac{\xi ^{2\alpha -1}(\xi ^2+\eta )}{\lambda ^2+(\xi ^2+\eta )^2}\underset{+\infty }{\sim }\frac{1}{\xi ^{3-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\), then in both cases where (\(\eta >0\) and \(\lambda \in {\mathbb {R}}\)) or (\(\eta =0\) and \(\lambda \in {\mathbb {R}}^{*}\)), we get that \(\mathtt {I}_4(\lambda ,\eta ,\alpha )\) is well-defined. Now, using Cauchy-Schwarz inequality, we get

$$\begin{aligned} \left| \mathtt {I}_5(\lambda ,\eta ,\alpha ,f_5)\right| \le 2|\lambda |\gamma \kappa (\alpha )\left( \int _0^{+\infty }\frac{\xi ^{2\alpha -1}}{\left( \lambda ^2+(\xi ^2+\eta )^2\right) ^2}d\xi \right) ^{\frac{1}{2}}\left( \int _{{\mathbb {R}}}|f_5(\xi )|^2d\xi \right) ^{\frac{1}{2}}. \end{aligned}$$

We have

$$\begin{aligned} \frac{\xi ^{2\alpha -1}}{\left( \lambda ^2+(\xi ^2+\eta )^2\right) ^2}\underset{0}{\sim }\frac{\xi ^{2\alpha -1}}{\left( \lambda ^2+\eta ^2\right) ^2}\quad \text {and}\quad \frac{\xi ^{2\alpha -1}}{\left( \lambda ^2+(\xi ^2+\eta )^2\right) ^2}\underset{+\infty }{\sim } \frac{1}{\xi ^{9-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\), then

$$\begin{aligned} \int _0^{+\infty }\frac{\xi ^{2\alpha -1}}{(\lambda ^2+(\xi ^2+\eta )^2)^2}d\xi <+\infty . \end{aligned}$$

Thus, using the fact that \(f_5\in L^2({\mathbb {R}})\), we get that \(\mathtt {I}_5(\lambda ,\eta ,\alpha ,f_5)\) is well-defined. In the same way, using Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} |\mathtt {I}_6(\lambda ,\eta ,\alpha ,f_5)|\le 2\gamma \kappa (\alpha )\left( \int _0^{+\infty }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )^2}{(\lambda ^2+(\xi ^2+\eta )^2)^2}d\xi \right) ^\frac{1}{2}\left( \int _{{\mathbb {R}}}|f_5(\xi )|^2d\xi \right) ^{\frac{1}{2}}. \end{aligned}$$

We have

$$\begin{aligned} \frac{\xi ^{2\alpha -1}(\xi ^2+\eta )^2}{(\lambda ^2+(\xi ^2+\eta )^2)^2}\underset{0}{\sim }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )^2}{\left( \lambda ^2+\eta ^2\right) ^2}\quad \text {and}\quad \frac{\xi ^{2\alpha -1}(\xi ^2+\eta )^2}{(\lambda ^2+(\xi ^2+\eta )^2)^2}\underset{+\infty }{\sim } \frac{1}{\xi ^{5-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\), then

$$\begin{aligned} \int _0^{+\infty }\frac{\xi ^{2\alpha -1}(\xi ^2+\eta )^2}{(\lambda ^2+(\xi ^2+\eta )^2)^2}<+\infty . \end{aligned}$$

Finally, since \(f_5\in L^2({\mathbb {R}})\), then \(\mathtt {I}_6(\lambda ,\eta ,\alpha ,f_5)\) is well-defined. The proof is thus complete. \(\square \)

Lemma B.5

Let \(0<\alpha <1\), \(\eta >0\) and \(\lambda >0\), then

$$\begin{aligned} \left\{ \begin{array}{ll} \mathtt {I}_7(\eta ,\alpha )=\gamma \kappa (\alpha )\left( \int _{{\mathbb {R}}}\frac{|\xi |^{2\alpha -1}}{\xi ^2+\eta }d\xi \right) ^{\frac{1}{2}},\quad \text { is well-defined},\\ \mathtt {I}_8(\lambda ,\eta ,\alpha )=\int _{{\mathbb {R}}}\frac{ \left| \xi \right| ^{\alpha +\frac{1}{2}}}{(\lambda +\xi ^2+\eta )^{2}}d\xi =c_1\left( \lambda +\eta \right) ^{\frac{\alpha }{2}-\frac{5}{4}},\\ \mathtt {I}_9(\lambda ,\eta )=\left( \int _{{\mathbb {R}}}\frac{1}{\left( \lambda +\xi ^2+\eta \right) ^2}d\xi \right) ^{\frac{1}{2}}=\sqrt{\frac{\pi }{2}}\frac{1}{\left( \lambda +\eta \right) ^{\frac{3}{4}}},\\ \mathtt {I}_{10}(\lambda ,\eta )=\left( \int _{{\mathbb {R}}}\frac{ \xi ^2}{(\lambda +\xi ^2+\eta )^{4}} d\xi \right) ^{\frac{1}{2}}=\frac{\sqrt{\pi }}{4}\frac{1}{\left( \lambda +\eta \right) ^{\frac{5}{4}}}, \end{array}\right. \end{aligned}$$

where \(c_1\) is a positive constant number independent of \(\lambda \).

Proof

First, for \(\mathtt {I}_7\), we have

$$\begin{aligned} \frac{|\xi |^{2\alpha -1}}{\xi ^2+\eta }\underset{0}{\sim }\frac{\xi ^{2\alpha -1}}{\eta }\quad \text {and}\quad \frac{|\xi |^{2\alpha -1}}{\xi ^2+\eta }\underset{+\infty }{\sim } \frac{1}{\xi ^{3-2\alpha }}. \end{aligned}$$

Since \(0<\alpha <1\) and \(\eta >0\), then \(\mathtt {I}_7\) is well-defined. Next, \(\mathtt {I}_8\) can be written as

$$\begin{aligned} \mathtt {I}_8(\lambda ,\eta ,\alpha )=\frac{2}{\left( \lambda +\eta \right) ^{2}}\int _{0}^{\infty }\frac{ \xi ^{\alpha +\frac{1}{2}}}{\left( 1+\frac{\xi ^2}{\lambda +\eta }\right) ^{2}}d\xi . \end{aligned}$$
(B.1)

Thus, equation (B.1) may be simplified by defining a new variable \(y=1+\frac{\xi ^2}{\lambda +\eta }\). Substituting \(\xi \) by \(\left( y-1\right) ^{\frac{1}{2}}\left( \lambda +\eta \right) ^{\frac{1}{2}}\) in (B.1), we get

$$\begin{aligned} \mathtt {I}_8(\lambda ,\eta ,\alpha )=\left( \lambda +\eta \right) ^{\frac{\alpha }{2}-\frac{5}{4}}\int _{1}^{\infty }\frac{\left( y-1\right) ^{\frac{\alpha }{2}-\frac{1}{4}}}{y^2}dy. \end{aligned}$$

Using the fact that \(\alpha \in ]0,1[\), it easy to see that \(y^{-2}\left( y-1\right) ^{\frac{\alpha }{2}-\frac{1}{4}}\in L^1(1,+\infty )\), therefore there exists \(c_1>0\) such that

$$\begin{aligned} \mathtt {I}_8(\lambda ,\eta ,\alpha )=c_1\left( \lambda +\eta \right) ^{\frac{\alpha }{2}-\frac{5}{4}}. \end{aligned}$$

Now, \(\mathtt {I}_9(\lambda ,\eta )\) can be written as

$$\begin{aligned} \left( \mathtt {I}_9(\lambda ,\eta )\right) ^2= & {} \frac{2}{(\lambda +\eta )^2}\int _0^{\infty }\frac{1}{\left( 1+\left( \frac{\xi }{\sqrt{\lambda +\eta }}\right) ^2\right) ^2}d\xi =\frac{2}{(\lambda +\eta )^{\frac{3}{2}}}\int _0^{\infty }\frac{1}{\left( 1+s^2\right) ^2}ds \\= & {} \frac{2}{(\lambda +\eta )^{\frac{3}{2}}}\times \frac{\pi }{4}=\frac{\pi }{2(\lambda +\eta )^{\frac{3}{2}}}. \end{aligned}$$

Therefore,  \(\mathtt {I}_9(\lambda ,\eta )={\sqrt{\frac{\pi }{2}}\frac{1}{(\lambda +\eta )^{\frac{3}{4}}}}\). Finally, \(\mathtt {I}_{10}(\lambda ,\eta )\) can be written as

$$\begin{aligned} \left( \mathtt {I}_{10}(\lambda ,\eta )\right) ^2= & {} \frac{2}{(\lambda +\eta )^4}\int _0^{\infty }\frac{\xi ^2}{\left( 1+\left( \frac{\xi }{\sqrt{\lambda +\eta }}\right) ^2\right) ^4}d\xi \\= & {} \frac{2}{(\lambda +\eta )^{\frac{5}{2}}}\int _0^{\infty }\frac{s^2}{\left( 1+s^2\right) ^4}ds=\frac{2}{(\lambda +\eta )^{\frac{5}{2}}}\times \frac{\pi }{32}. \end{aligned}$$

Then \(\mathtt {I}_{10}(\lambda ,\eta )=\frac{\sqrt{\pi }}{4}\frac{1}{(\lambda +\eta )^{\frac{5}{4}}}\). The proof is thus complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akil, M., Ghader, M. & Wehbe, A. The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization. SeMA 78, 287–333 (2021). https://doi.org/10.1007/s40324-020-00233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-020-00233-y

Keywords

Mathematics Subject Classification

Navigation