Skip to main content
Log in

Novel efficient collocation method for Sturm–Liouville problems with nonlocal integral boundary conditions

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper presents a study of the performance of the collocation methods using sinc and Bernstein bases functions to determine the eigenvalues of Sturm–Liouville problems with nonlocal boundary conditions. The two methods have the linear systems solved by the Q-Z method. This study shows that Bernstein-collocation method performs better than the sinc-collocation method for the cases considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chanane, B.: High order approximations of the eigenvalues of Sturm–Liouville problems with coupled self-adjoint boundary conditions. Appl. Anal. 80, 317–330 (2001)

    Article  MathSciNet  Google Scholar 

  2. Chanane, B.: Computing eigenvalues of regular Sturm–Liouville problems. Appl. Math. Lett. 12, 119–125 (1999)

    Article  MathSciNet  Google Scholar 

  3. Harris, B.: Asymptotics of eigenvalues for regular Sturm–Liouville problems. J. Math. Anal. Appl. 183, 25–36 (1994)

    Article  MathSciNet  Google Scholar 

  4. Kong, Q., Zettl, A.: Eigenvalues of regular Sturm–Liouville problems. J. Differ. Equ. 131, 1–19 (1996)

    Article  MathSciNet  Google Scholar 

  5. Chanane, B.: Computation of the eigenvalues of Sturm–Liouville Problems with parameter dependent boundary conditions using the regularized sampling method. Math. Comput. 252, 1793–1801 (2005)

    Article  MathSciNet  Google Scholar 

  6. Karakosta, G., Tsamatos, P.: Positive solutions for a nonlocal boundary-value problem with increasing response. Electron. J. Differ. Equ. 73, 1–8 (2000)

    MathSciNet  Google Scholar 

  7. Karakosta, G., Tsamatos, P.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems 30, 1–17 (2002)

  8. Krall, A.: The adjoint of a differential operator with integral boundary conditions. Trans. Math. Soc. 16, 738–742 (1965)

    MathSciNet  MATH  Google Scholar 

  9. Krall, A.: Second-order ordinary differential operators with general boundary conditions. Duke Math. 32, 617–626 (1965)

    Article  MathSciNet  Google Scholar 

  10. Pryce, J.: Numerical Solution of Sturm-Liouville Problems. Oxford Science Publications, Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  11. Chanane, B.: Computing the eigenvalues of a class of nonlocal Sturm–Liouville problems. Math. Comput. 50, 225–232 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Lund, J., Vogel, R.: A fully-Galerkin method for the numerical solution of an inverse problem in a parabolic partial differential equation. Inverse Probl. 6, 205–217 (1990)

    Article  MathSciNet  Google Scholar 

  13. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations PA. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  14. Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357–375 (1991)

    Article  MathSciNet  Google Scholar 

  15. Parand, K., Pirkhedri, A.: Sinc-collocation method for solving astrophysics equations. New Astron 15, 533–537 (2010)

    Article  Google Scholar 

  16. Parand, K., Dehghan, M., Pirkhedri, A.: Sinc-collocation method for solving the Blasius equation. Phys. Lett. A 373, 4060–4065 (2009)

    Article  MathSciNet  Google Scholar 

  17. Saadatmandi, A., Razzaghi, M., Dehghan, M.: Sinc-collocation methods for the solution of Hallen-integral equation. J. Electromagan Waves Appl. 19, 245–256 (2005)

    Article  MathSciNet  Google Scholar 

  18. Shidfar, A., Zolfaghari, R., Damirchi, J.: Application of Sinc-collocation method for solving an inverse problem. J. Comput. Appl. Math. 223, 545–554 (2009)

    Article  MathSciNet  Google Scholar 

  19. Winter, D., Bowers, K., Lund, J.: Wind-driven currents in a sea with a variable Eddy viscosity calculated via aSinc–Galerkin technique. Int. J. Numer. Methods Fluids 33, 1041–1073 (2000)

    Article  Google Scholar 

  20. El-Gamel, M.: Numerical solution of Troeschs problem by sinc-collocation method. Appl. Math. 4(04), 707–2012 (2013)

    Article  Google Scholar 

  21. El-Gamel, M.: A note on solving the fourth-order parabolic equation by the Sinc–Galerkin method. Calcolo 52, 327–342 (2015)

    Article  MathSciNet  Google Scholar 

  22. El-Gamel, M., Mohsen, A., Abdrabou, A.: Sinc–Galerkin solution to the clamped plate eigenvalue problem. SeMA J. 74, 165–180 (2017)

    Article  MathSciNet  Google Scholar 

  23. El-Gamel, M.: Error analysis of Sinc–Galerkin method for time-dependent partial differential equations. Numer Algor 77, 517–533 (2018)

    Article  MathSciNet  Google Scholar 

  24. Babaei, A., Moghaddam, B., Banihashemi, S., Machado, J.: Numerical solution of variable order fractional integro-partial differential equations via sinc-collocation method based on single and double exponential transformations. Commun. Nonlinear Sci. Numer. Simul. 82, 104985 (2020)

    Article  MathSciNet  Google Scholar 

  25. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  Google Scholar 

  26. Rajesh, K., Kumar, N., Pirkhedri, A.: Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17, 303–308 (2012)

    Article  Google Scholar 

  27. Isler, N., Dascioglu, A.: Bernstein collocation method for solving nonlinear differential equations. Math. Comput. Appl. 18, 293–300 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Maleknejad, K., Basirat, B., Hashemizadeh, E.: Bernstein operational matrix approach for system of high order linear Volterra–Fredholm integro-differential equations. Math. Comp. Model. 55, 1363–1372 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mandal, B., Bhattacharya, S.: Numerical solution of some classes of integral equations using Bernstein polynomials. Appl. Math. Comput. 190, 1707–1716 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Maleknejad, K., Hashemizadeh, E., Ezzati, R.: A new approach to the numerical solution of Volterra integral equations by using Bernsteins approximation. Commun. Nonlinear Sci. Numer. Simul. 16, 647–655 (2011)

    Article  MathSciNet  Google Scholar 

  31. Maleknejad, K., Hashemizadeh, E., Basirat, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations Commun. Nonlinear Sci. Numer. Simul. 17, 52–61 (2012)

    Article  MathSciNet  Google Scholar 

  32. Yüzbaşı, S.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 219, 6328–6343 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Bhattarcharya, S., Mandal, B.: Numerical solution of singular integro-differential equations. Appl. Math. Comput. 195, 346–350 (2008)

    MathSciNet  Google Scholar 

  34. Bhatta, D.: Use of Bernstein Polynomials to solve Kdv-Burger equation numerically. Appl. Math. Comput. 206, 456–457 (2008)

    MathSciNet  Google Scholar 

  35. Youse, S., Behroozifar, M., Dehghan, M.: Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials. Appl. Math. Model. 36, 945–963 (2012)

    Article  MathSciNet  Google Scholar 

  36. Singh, V.E., Postnikov, E.: Operational matrix approach for solution of integro-differential equations arising in theory of anomalous relaxation processes in vicinity of singular point. Appl. Math. Model. 37, 6609–6616 (2013)

    Article  MathSciNet  Google Scholar 

  37. El-Gamel, M.: A comparison between the Sinc–Galerkin and the modified decomposition methods for solving two-point boundary-value problems. J. Comput. Phys. 223, 369–383 (2007)

    Article  MathSciNet  Google Scholar 

  38. El-Gamel, M.: Comparison of the solutions obtained by Adomian decomposition and wavelet-Galerkin methods of boundary-value problems. Appl. Math. Comput. 186, 652–664 (2007)

    MathSciNet  MATH  Google Scholar 

  39. El-Gamel, M.: Numerical comparison of sinc-collocation and Chebychev-collocation methods for determining the eigenvalues of Sturm-Liouville problems with parameter-dependent boundary conditions. SeMA J 66, 29–42 (2014)

    Article  MathSciNet  Google Scholar 

  40. El-Gamel, M., Abd, El-hady M.: Two very accurate and efficient methods for computing eigenvalues of Sturm–Liouville problems. Appl. Math. Model. 37, 5039–5046 (2013)

    Article  MathSciNet  Google Scholar 

  41. El-Gamel, M., Adel, W.: Two very Accurate and efficient methods for solving time-dependent problems. Appl. Math. 9, 1270–1280 (2018)

    Article  Google Scholar 

  42. Al Jammaz A.: Jacobi-Davidson method for Polynomial Eigenvalue Problems, Heinrich-Heine-University 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Gamel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gamel, M., El-Hady, M.A. Novel efficient collocation method for Sturm–Liouville problems with nonlocal integral boundary conditions. SeMA 77, 375–388 (2020). https://doi.org/10.1007/s40324-020-00220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-020-00220-3

Keywords

Mathematics Subject Classification

Navigation