Skip to main content
Log in

Computing High-Index Eigenvalues of Singular Sturm–Liouville Problems

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the computation of the high-index eigenvalues of singular Sturm–Liouville problems using the Chebyshev spectral collocation method. The singular Sturm–Liouville problem is transformed into generalized eigenvalue problem by using the spectral differentiation matrices to compute derivatives of Chebyshev polynomials at Chebyshev Gauss–Lobatto nodes. A few different examples shall be solved numerically to demonstrate reliability and efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pryce, J.D.: Numerical Solution of Sturm–Liouville Problems. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  2. Zettl, A.: Sturm–Liouville Theory. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  3. Zettl, A.: Sturm–Liouville problems. In: Hinton, D., Schaefer, P.W. (eds.) Spectral Theory and Computational Methods of Sturm–Liouville Problems, Lecture Notes in Pure and Appl. Math., vol. 191, pp. 1–104. Marcel Dekker, New York (1997)

    Google Scholar 

  4. Bailey, P.B., Everitt, W.N., Zettl, A.: Computing eigenvalues of singular Sturm–Liouville problems. Results Math. 20, 391–423 (1991)

    Article  MathSciNet  Google Scholar 

  5. Lutgen, J.P.: Eigenvalue accumulation for singular Sturm–Liouville problems nonlinear in the spectral paramete. J. Differ. Equ. 159, 515–542 (1999)

    Article  MathSciNet  Google Scholar 

  6. Homer, M.S.: Boundary value problems for the Laplace tidal wave equation. Proc. R. Soc. Lond. A 428, 157–180 (1990)

    Article  MathSciNet  Google Scholar 

  7. Patra, A., Srivastava, P.D.: Relative perturbation bounds for matrix eigenvalues and singular values. Int. J. Appl. Comput. Math. 4, 138 (2018)

    Article  MathSciNet  Google Scholar 

  8. Banks, D., Kurowski, G.: Computation of eigenvalues of singular Sturm–Liouville systems. Math. Comput. 22, 304–310 (1968)

    Article  MathSciNet  Google Scholar 

  9. Bas, E., Metin, F.: Spectral analysis for fractional hydrogen atom equation. Adv. Pure Math. 5, 767–773 (2015)

    Article  Google Scholar 

  10. Ledoux, V., Daele, M.V.: Solution of Sturm–Liouville problems using modified Neumann schemes. SIAM J. Sci. Comput. 32, 564–584 (2010)

    Article  MathSciNet  Google Scholar 

  11. Aydemir, K., Mukhtarov, O.: Asymptotic distribution of eigenvalues and eigenfunctions for a multi-point discontinuous Sturm–Liouville problem. Electron. J. Differ. Equ. 2016, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  12. Paine, J., de Hoog, F.: Uniform estimation of the eigenvalues of Sturm–Liouville problems. J. Aust. Math. Soc. Ser. B 21, 365–383 (1980)

    Article  MathSciNet  Google Scholar 

  13. Paine, J.: Correction of Sturm–Liouville eigenvalue estimates. Math. Comput. 39, 415–420 (1982)

    Article  MathSciNet  Google Scholar 

  14. Andrew, A., Paine, J.: Correction of finite element estimates for Sturm–Liouville eigenvalues. Numer. Math. 50, 205–215 (1982)

    Article  MathSciNet  Google Scholar 

  15. Taher, A.H.S., Malek, A.: A new algorithm for solving sixth-order Sturm–Liouville problems. Int. J. Appl. Math. 24, 631–639 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Taher, A.H.S., Malek, A.: An efficient algorithm for solving high-order Sturm–Liouville problems using variational iteration method. Fixed Point Theory 14, 193–210 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Taher, A.H.S., Malek, A., Thabet, A.S.A.: Semi-analytical approximation for solving high-order Sturm–Liouville problems. Br. J. Math. Comput. Sci. 23, 3345–3357 (2014)

    Article  Google Scholar 

  18. Chanane, B.: Computing the eigenvalues of singular Sturm–Liouville problems using the regularized sampling method. Appl. Math. Comput. 184, 972–978 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Singh, R., Kumar, J.: Computation of eigenvalues of singular Sturm–Liouville problems using modified Adomian decomposition method. Int. J. Nonlinear Sci. 15, 247–258 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Makarov, V.L., Dragunov, D.V., Klimenko, Y.V.: The FD-method for solving Sturm–Liouville problems with special singular differential operator. Math. Comput. 82, 953–973 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ledoux, V., Daele, M.V., Berghe, G.V.: Efficient computation of high index Sturm–Liouville eigenvalues for problems in physics. Comput. Phys. Commun. 180, 241–250 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dehghan, M.: An efficient method to approximate eigenfunctions and high-index eigenvalues of regular Sturm–Liouville problems. Appl. Math. Comput. 279, 249–257 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Bailey, P.B., Gordon, M., Shampine, L.: Automatic solution for Sturm–Liouville problems. ACM Trans. Math. Softw. 4, 193–208 (1978)

    Article  MathSciNet  Google Scholar 

  24. Fulton, C., Pruess, S.: Mathematical software for Sturm–Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993)

    Article  Google Scholar 

  25. Marletta, M., Pryce, J.: A new multipurpose software package for Schrödinger and Sturm–Liouville computations. Comput. Phys. Commun. 62, 42–52 (1991)

    Article  Google Scholar 

  26. Ledoux, V., Daele, M.V., Berghe, G.V.: MATSLISE: a software package for the numerical solution of Sturm–Liouville and Schrödinger problems. ACM Trans. Math. Softw. 31, 532–554 (2005)

    Article  Google Scholar 

  27. Bildik, N., Deniz, S.: Applications of Taylor collocation method and Lambert W function to the systems of delay differential equations. Turk. J. Math. Comput. Sci. 1, 1–13 (2013)

    Google Scholar 

  28. Deniz, S., Bildik, N., Sezer, M.: A note on stability analysis of Taylor collocation method. CBU J. Sci. 13, 149–153 (2017)

    Google Scholar 

  29. Bildik, N., Deniz, S.: New analytic approximate solutions to the generalized regularized long wave equations. Bull. Korean Math. Soc. 55, 749–762 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Taher, A.H.S., Malek, A., Momeni-Masuleh, S.H.: Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm–Liouville problems. Appl. Math. Model. 37, 4634–4642 (2013)

    Article  MathSciNet  Google Scholar 

  31. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Fluid Dynamics. Springer, New York (1988)

    Book  Google Scholar 

  32. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  34. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  35. Groves, G.V.: Notes on obtaining the eigenvalues of Laplace’s tidal equation. Planet. Space Sci. 29, 1339–1344 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Haytham Saleh Taher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, A.H.S. Computing High-Index Eigenvalues of Singular Sturm–Liouville Problems. Int. J. Appl. Comput. Math 5, 45 (2019). https://doi.org/10.1007/s40819-019-0629-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0629-8

Keywords

Navigation