Skip to main content
Log in

Tree-based tensor formats

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

The main goal of this paper is to study the topological properties of tensors in tree-based Tucker format. These formats include the Tucker format and the Hierarchical Tucker format. A property of the so-called minimal subspaces is used for obtaining a representation of tensors with either bounded or fixed tree-based rank in the underlying algebraic tensor space. We provide a new characterisation of minimal subspaces which extends the existing characterisations. We also introduce a definition of topological tensor spaces in tree-based format, with the introduction of a norm at each vertex of the tree, and prove the existence of best approximations from sets of tensors with bounded tree-based rank, under some assumptions on the norms weaker than in the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. By using the notion of edge, that is, the connection between one vertex to another, then our definition of depth coincides with the classical definition of height, i.e. the longest downward path between the root and a leaf.

  2. It suffices to have in (8) the terms \(n=0\) and \(n=N.\) The derivatives are to be understood as weak derivatives.

  3. Recall that a multilinear map T from

    figure h

    equipped with the product topology to a normed space \((W,\Vert \cdot \Vert )\) is continuous if and only if \(\Vert T\Vert <\infty \), with

    $$\begin{aligned} \Vert T \Vert \!:=\! \sup _{\begin{array}{c} (v_1,\ldots ,v_d) \\ \Vert (v_1,\ldots ,v_d)\Vert \le 1 \end{array}} \Vert T(v_{1},\ldots ,v_{d})\Vert&\!=\! \!\sup _{\begin{array}{c} (v_1,\ldots ,v_d) \\ \Vert v_1\Vert _1\le 1,\ldots , \Vert v_d\Vert _d\le 1 \end{array}} \Vert T(v_{1},\ldots ,v_{d})\Vert \!=\! \sup _{{ (v_1,\ldots ,v_d)}} \frac{\Vert T (v_{1},\ldots ,v_{d})\Vert }{\Vert v_1\Vert _1\ldots \Vert v_d\Vert _d}. \end{aligned}$$

References

  1. Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 16, 1423–1472 (2016)

    Article  MathSciNet  Google Scholar 

  2. Falcó, A., Hackbusch, W., Nouy, A.: On the Dirac–Frenkel variational principle on tensor Banach spaces. Found. Comput. Math. (2018). https://doi.org/10.1007/s10208-018-9381-4

  3. Falcó, A., Hackbusch, W.: Minimal subspaces in tensor representations. Found. Comput. Math. 12, 765–803 (2012)

    Article  MathSciNet  Google Scholar 

  4. Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121, 503–530 (2012)

    Article  MathSciNet  Google Scholar 

  5. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)

    Article  MathSciNet  Google Scholar 

  6. Greub, W.H.: Linear Algebra. Graduate Text in Mathematics, 4th edn. Springer, Berlin (1981)

    Google Scholar 

  7. Grothendieck, A.: Résumé de la th éorie métrique des produit tensoriels topologiques. Bol. Soc. Mat. S ão Paulo 8, 1-79 (1953/56)

  8. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)

    Article  MathSciNet  Google Scholar 

  9. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Book  Google Scholar 

  10. Hackbusch, W.: Truncation of tensors in the hierarchical format. same issue of SEMA (2018)

  11. Khoromskij, B.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110(1), 1–19 (2012)

    Article  Google Scholar 

  12. Light, W.A., Cheney, E.W.: Approximation Theory in Tensor Product Spaces. Lect. Notes Math., 1169th edn. Springer, Berlin (1985)

    Book  Google Scholar 

  13. Nouy, A.: Low-rank methods for high-dimensional approximation and model order reduction. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)

    Google Scholar 

  14. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  15. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147902 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Falcó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcó, A., Hackbusch, W. & Nouy, A. Tree-based tensor formats. SeMA 78, 159–173 (2021). https://doi.org/10.1007/s40324-018-0177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0177-x

Keywords

Mathematics Subject Classification

Navigation