Skip to main content
Log in

A family of univariate ternary subdivision schemes with 5 parameters

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient strategy for the construction of a family of ternary subdivision schemes with five parameters. These five parameters allow us to increase the choices when drawing and designing different models from the same initial control points. Moreover, by choosing appropriate values of parameters, we can get many existing ternary approximating subdivision schemes. Some of the existing ternary interpolatory and many new ternary approximating/interpolatory subdivision schemes with arbitrary order of regularities can also be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslam, M., Mustafa, G., Ghaffar, A.: \((2n-1)\)-Point ternary approximating and interpolating subdivision schemes. J. Appl. Math. 2011, 12 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chaikin, G.M.: An algorithm for high speed curve generation. Comput. Graph. Image Process. 3(4), 346–349 (1974)

    Article  Google Scholar 

  3. Charina, M., Conti, C.: Polynomial reproduction of multivariate scalar subdivision schemes. J. Comput. Appl. Math. 240, 51–61 (2013)

    Article  MathSciNet  Google Scholar 

  4. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  Google Scholar 

  5. Dyn, N., Levin, D., Micchelli, C.: Using parameter to increase smoothness of curves and surfaces generated by subdivision. Comput. Aided Geom. Des. 7, 129–140 (1990)

    Article  MathSciNet  Google Scholar 

  6. Ghaffar, A., Mustafa, G., Qin, K.: The 4-point \(a\)-ary approximating subdivision scheme. Open J. Appl. Sci. 3, 106–111 (2013)

    Article  Google Scholar 

  7. Ghaffar, A., Mustafa, G.: A family of even-point ternary approximating schemes. Appl. Math. 2012, 14 (2012)

    MATH  Google Scholar 

  8. Ghaffar, A., Mustafa, G., Qin, K.: Unification and application of 3-point approximating subdivision schemes of varying arity. Open J. Appl. Sci. 2012, 48–52 (2012)

    Article  Google Scholar 

  9. Ko, K.P., Lee, B.G., Yoon, G.J.: A ternary 4-point approximating subdivision scheme. Appl. Math. Comput. 190, 1563–1573 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Mustafa, G., Ghaffar, A., Khan, F.: The odd-point ternary approximating schemes. Am. J. Comput. Math. 1, 111–118 (2011)

    Article  Google Scholar 

  11. Rehan, K., Siddiqi, S.S.: A family of ternary subdivision schemes for curve. Appl. Math. Comput. 270, 114–123 (2015)

    MathSciNet  Google Scholar 

  12. Shen, L., Huang, Z.: A class of curve subdivision schemes with several parameters. Comput. Aided Geom. Des. Comput. Graph 19, 468–472 (2007)

    Google Scholar 

  13. Siddiqi, S.S., Rehan, K.: Ternary \(2N\)-point Lagrange subdivision schemes. Appl. Math. Comput. 249, 444–452 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Siddiqi, S.S., Younis, M.: Construction of ternary approximating subdivision schemes. UPB Sci. Bull. 76(1), 71–78 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Warren, J., Weimer, H.: Subdivision Method for Geometric Design. A Constructive Approach. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  16. Zheng, H.C., Huang, S.P., Guo, F., Peng, G.H.: Designing multi-parameter curve subdivision schemes with high continuity. Appl. Math. Comput. 243, 197–208 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Zheng, H.C., Hu, M., Peng, G.: \(P\)-ary subdivision generalizing B-splines. Second Int. Conf. Comput. Electr. Eng. 2, 214–218 (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NRPU (P. No. 3183) of HEC Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Mustafa.

Appendices

Appendix A

1.1 A.1 Proof of Proposition 8

We shall prove it by mathematical induction on m. When \(m=1\),

$$\begin{aligned} b(z)= & {} \alpha _{4}z^{6}+(\alpha _{4}+\alpha _{3})z^{5}+(\alpha _{4}+a_{3}+\alpha _{2})z^{4}+(\alpha _{3}+\alpha _{2}+\alpha _{1})z^{3} +(\alpha _{2}+\alpha _{1}\\&+\,\alpha _{0})z^{2}+(\alpha _{1}+\alpha _{0})z+\alpha _{0}. \end{aligned}$$

The sum of the coefficients of the terms having the powers of z: 3p, \(3p+1\) and \(3p+2\) in b(z) are

$$\begin{aligned} \alpha _{4}+(\alpha _{3}+\alpha _{2}+\alpha _{1})+\alpha _{0}=\sum \limits _{i=0}^{4}\alpha _{i}=3^{0}\sum \limits _{i=0}^{4}\alpha _{i}=3^{m-1}\sum \limits _{i=0}^{4}\alpha _{i},\\ (\alpha _{4}+\alpha _{3})+(\alpha _{2}+\alpha _{1}+\alpha _{0})=\sum \limits _{i=0}^{4}\alpha _{i}=3^{0}\sum \limits _{i=0}^{4}\alpha _{i}=3^{m-1}\sum \limits _{i=0}^{4}\alpha _{i}, \end{aligned}$$

and

$$\begin{aligned} (\alpha _{4}+\alpha _{3}+\alpha _{2})+(\alpha _{1}+\alpha _{0})=\sum \limits _{i=0}^{4}\alpha _{i}=3^{0}\sum \limits _{i=0}^{4}\alpha _{i}=3^{m-1}\sum \limits _{i=0}^{4}\alpha _{i}. \end{aligned}$$

Now assume that when \(m=k\), the result holds up i.e.

$$\begin{aligned} b(z)= & {} (\alpha _{4}z^{4}+\alpha _{3}z^{3}+\alpha _{2}z^{2}+\alpha _{1}z+\alpha _{0})(1+z+z^{2})^{k} =\beta _{4+2k}z^{4+2k}+\beta _{3+2k}z^{3+2k}\\&+\,\beta _{2+2k}z^{2+2k}+\dots \beta _{4+k}z^{4+k}+\beta _{3+k}z^{3+k}+\beta _{2+k}z^{2+k}+\cdots +\beta _{2}z^{2}+\beta _{1}z+\beta _{0}. \end{aligned}$$

If we assume that \(4+2k=3p\), then we have

$$\begin{aligned}&\beta _{4+2k}+\beta _{1+2k}+\cdots +\beta _{4+k}+\beta _{1+k}+\cdots +\beta _{3}+\beta _{0}= \beta _{3+2k}+\beta _{2k}+\cdots \\&\quad +\beta _{3+k}+\beta _{k}+\cdots +\beta _{4}+\beta _{1}=\beta _{2+2k}+\beta _{2k-1}+\cdots +\beta _{2+k}+\beta _{k-1}+\cdots \\&\quad +\beta _{5} +\beta _{2}=3^{k-1}\sum \limits _{i=0}^{4}\alpha _{i}. \end{aligned}$$

Now we shall prove that for \(m=k+1\), the result holds up.

Let \(m=k+1\), then

$$\begin{aligned} b(z)= & {} (\alpha _{4}z^{4}+\alpha _{3}z^{3}+\alpha _{2}z^{2}+\alpha _{1}z+\alpha _{0})(1+z+z^{2})^{k+1}= (\beta _{4+2k}z^{4+2k}+\beta _{3+2k}z^{3+2k}\\&+\,\beta _{2+2k}z^{2+2k}+\cdots \beta _{4+k}z^{4+k}+\beta _{3+k}z^{3+k}+\beta _{2+k}z^{2+k}+\cdots +\beta _{2}z^{2}+\beta _{1}z+\beta _{0}) \\&\times \, (1+z+z^{2})=\beta _{4+2k}z^{6+2k}+(\beta _{4+2k}+\beta _{3+2k})z^{5+2k}+(\beta _{4+2k}+\beta _{3+2k}+\beta _{2+2k}) \\&\times \, z^{4+2k}+(\beta _{3+2k}+\beta _{2+2k}+\beta _{1+2k})z^{3+2k}+\cdots +(\beta _{3}+\beta _{2}+\beta _{1})z^{3}+(\beta _{2}+\beta _{1}\\&+\,\beta _{0})z^{2}+(\beta _{1}+\beta _{0})z +\beta _{0}. \end{aligned}$$

So the sum of the coefficients of the terms with the powers of z: 3p, \(3p+1\) and \(3p+2\) in b(z) are

$$\begin{aligned}&\beta _{4+2k}+\beta _{3+2k}+\cdots +\beta _{4+k}+\beta _{3+k}+\cdots +\beta _{2}+\beta _{1}+\beta _{0}=\beta _{4+2k}+\beta _{3+2k}+\beta _{2+2k}\\&\quad +\cdots +\beta _{4+k}+\beta _{3+k}+\cdots +\beta _{2}+\beta _{1}+\beta _{0}= \beta _{4+2k}+\beta _{3+2k}+\beta _{2+2k}+\cdots +\beta _{4+k}\\&\quad +\beta _{3+k}+\cdots +\beta _{2}+\beta _{1}+\beta _{0}=3^{k}\sum \limits _{i=0}^{4}\alpha _{i}=3^{m-1}\sum \limits _{i=0}^{4}\alpha _{i}. \end{aligned}$$

Result holds up for \(m=k+1\). Therefore, the Proposition 8 holds up.

Appendix B

1.1 B.1 Proof of Proposition 9

We shall prove it by mathematical induction on m.

Let \(m=1\),

$$\begin{aligned} b(z)= & {} (\alpha _{4}z^{4}+\alpha _{3}z^{3}+\alpha _{2}z^{2}+\alpha _{1}z+\alpha _{0})(1+z+z^2) =\alpha _{4}z^{6}+(\alpha _{4}+\alpha _{3})z^{5}\\&+(\alpha _{4}+a_{3}+\alpha _{2})z^{4}+(\alpha _{3}+\alpha _{2}+\alpha _{1})z^{3} +(\alpha _{2}+\alpha _{1}+\alpha _{0})z^{2}+(\alpha _{1}\\&+\alpha _{0})z+\alpha _{0}. \end{aligned}$$

The generating polynomial of the difference scheme b(z) is corresponding to the following \(4 \times 4\) order difference matrix \(B_{1}\)

$$\begin{aligned} B_{1}= \begin{bmatrix} \alpha _{4}&\quad \alpha _{3}+\alpha _{2}+\alpha _{1}&\quad \alpha _{0}&\quad 0 \\ 0&\quad \alpha _{4}+\alpha _{3}&\quad \alpha _{2}+\alpha _{1}+\alpha _{0}&\quad 0\\ 0&\quad \alpha _{4}+\alpha _{3}+\alpha _{2}&\quad \alpha _{1}+\alpha _{0}&\quad 0\\ 0&\quad \alpha _{4}&\quad \alpha _{3}+\alpha _{2}+\alpha _{1}&\quad \alpha _{0} \end{bmatrix}_{4 \times 4}. \end{aligned}$$

Eigenvalues of \(B_{1}\) are roots of the equation \(|B_{1}-\lambda I|=0\), where I is the \(4\times 4\) order unit matrix. Therefore we have

$$\begin{aligned} |B_{1}-\lambda I|= \begin{vmatrix} \alpha _{4}-\lambda&\quad \alpha _{3}+\alpha _{2}+\alpha _{1}&\quad \alpha _{0}&\quad 0 \\ 0&\quad \alpha _{4}+\alpha _{3}-\lambda&\quad \alpha _{2}+\alpha _{1}+\alpha _{0}&\quad 0\\ 0&\quad \alpha _{4}+\alpha _{3}+\alpha _{2}&\quad \alpha _{1}+\alpha _{0}-\lambda&\quad 0\\ 0&\quad \alpha _{4}&\quad \alpha _{3}+\alpha _{2}+\alpha _{1}&\quad \alpha _{0}-\lambda \end{vmatrix}_{4 \times 4}=0. \end{aligned}$$

Adding all the columns in the second last column and expanding the resulting determinant according to the last column and then according to the first column, we get

$$\begin{aligned} (\alpha _{4}-\lambda )(\alpha _{0}-\lambda ) \begin{vmatrix} \alpha _{4}+\alpha _{3}-\lambda&\sum \limits _{i=0}^{4}\alpha _{i}-\lambda \\ \alpha _{4}+\alpha _{3}+\alpha _{2}&\sum \limits _{i=0}^{4}\alpha _{i}-\lambda \end{vmatrix}_{2 \times 2}=0. \end{aligned}$$

Now extract the common factor \(\sum \nolimits _{i=0}^{4}\alpha _{i}-\lambda \) from the last column and then subtracting last row from the first row, we get

$$\begin{aligned} (\alpha _{4}-\lambda )(\alpha _{0}-\lambda )(\sum \limits _{i=0}^{4}\alpha _{i}-\lambda ) \begin{vmatrix} -\alpha _{2}-\lambda&0\\ \alpha _{4}+\alpha _{3}+\alpha _{2}&1 \end{vmatrix}_{2 \times 2}=0. \end{aligned}$$

Therefore, eigenvalues of the difference matrix \(B_{1}\) are \(\alpha _{4}\), \(\alpha _{0}\), \(\sum \nolimits _{i=0}^{4}\alpha _{i}\) and \(-\alpha _{2}\).

Suppose that the result holds up for \(m=k\), we have to prove that the result also holds up for \(m=k+1\).

When \(m=k\), the generating polynomial b(z) of difference scheme is

$$\begin{aligned} b(z)= & {} b_{k}(z)=(\alpha _{4}z^{4}+\alpha _{3}z^{3}+\alpha _{2}z^{2}+\alpha _{1}z+\alpha _{0})(1+z+z^2)^{k} =\beta _{4+2k}z^{4+2k}\\&+\,\beta _{3+2k}z^{3+2k}+\beta _{2+2k}z^{2+2k}+\cdots \beta _{4+k}z^{4+k}+\beta _{3+k}z^{3+k}+\beta _{2+k}z^{2+k}+\cdots \\&+\,\beta _{2}z^{2}+\beta _{1}z+\beta _{0}. \end{aligned}$$

If we assume that \(4+2k=3p\), then by the Proposition 8, we have

$$\begin{aligned}&\beta _{4+2k}+\beta _{1+2k}+\cdots +\beta _{4+k}+\beta _{1+k}+\cdots +\beta _{3}+\beta _{0}=\beta _{3+2k}+\beta _{2k}+\cdots +\beta _{3+k}+\beta _{k}\\&\quad +\cdots +\beta _{4}+\beta _{1}=\beta _{2+2k}+\beta _{2k-1}+\cdots +\beta _{2+k}+\beta _{k-1}+\cdots +\beta _{5}+\beta _{2}= 3^{k-1}\sum \limits _{i=0}^{4}\alpha _{i}. \end{aligned}$$

Let \(B_{k}\) of order \((3+2k) \times (3+2k)\) be the subdivision matrix corresponding to the generating polynomial of difference scheme \(b_{k}(z)\), then

$$\begin{aligned} B_{k}= \begin{bmatrix} \beta _{2k+4}&\quad \beta _{2k+1}&\quad \beta _{2k-2}&\quad \beta _{2k-5}&\quad \dots&\quad 0&\quad 0&\quad 0 \\ 0&\quad \beta _{2k+3}&\quad \beta _{2k}&\quad \beta _{2k-3}&\quad \dots&\quad 0&\quad 0&\quad 0\\ 0&\quad \beta _{2k+2}&\quad \beta _{2k-1}&\quad \beta _{2k-4}&\quad \dots&\quad 0&\quad 0&\quad 0\\ 0&\quad \beta _{2k+4}&\quad \beta _{2k+1}&\quad \beta _{2k-2}&\quad \dots&\quad 0&\quad 0&\quad 0\\ \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots \\ 0&\quad 0&\quad 0&\quad 0&\quad \dots&\quad \beta _{5}&\quad \beta _{2}&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad \dots&\quad \beta _{4}&\quad \beta _{1}&\quad 0 \\ 0&\quad 0&\quad 0&\quad 0&\quad \dots&\quad \beta _{6}&\quad \beta _{3}&\quad \beta _{0} \end{bmatrix}, \end{aligned}$$

where \(4+2k=3p\).

The eigenvalues of the matrix \(B_{k}\) are the roots of the characteristic equation \(|B_{k}-\lambda I|=0\).

When \(m=k+1\), the generating polynomial of the difference scheme become

$$\begin{aligned} b_{k+1}(z)= & {} b_{k}(z)(1+z+z^2)=\beta _{4+2k}z^{6+2k}+(\beta _{4+2k}+\beta _{3+2k})z^{5+2k}+(\beta _{4+2k}+\beta _{3+2k}\\&+\,\beta _{2+2k})z^{4+2k}+(\beta _{3+2k}+\beta _{2+2k}+\beta _{1+2k})z^{3+2k}+\cdots +(\beta _{3}+\beta _{2}+\beta _{1})z^{3}\\&+\,(\beta _{2}+\beta _{1}+\beta _{0})z^{2}+(\beta _{1}+\beta _{0})z+\beta _{0}. \end{aligned}$$

Then subdivision matrix \(B_{k+1}\), which is corresponding to the generating polynomial of difference scheme \(b_{k+1}(z)\) is

$$\begin{aligned} B_{k+1} = \left[ \begin{array}{ccccccccccccccccc} \beta _{2k+4} &{} \beta _{2k+3}+\beta _{2k+2}+\beta _{2k+1} &{} \beta _{2k}+\beta _{2k-1}+\beta _{2k-2} \\ 0 &{} \beta _{2k+4}+\beta _{2k+3} &{} \beta _{2k+2}+\beta _{2k+1}+\beta _{2k} \\ 0 &{} \beta _{2k+4}+\beta _{2k+3}+\beta _{2k+2} &{} \beta _{2k+1}+\beta _{2k}+\beta _{2k-1}\beta _{2k-1} \\ 0 &{} \beta _{2k+4} &{} \beta _{2k+3}+\beta _{2k+2}+\beta _{2k+1} \\ \vdots &{} \vdots &{} \vdots \\ \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{array} \right. \\ \left. \begin{array}{ccccccccccccccccc} \beta _{2k-3}+\beta _{2k-4}+\beta _{2k-5} &{} \dots &{} 0 &{} 0 &{} 0 \\ \beta _{2k-1}+\beta _{2k-2}+\beta _{2k-3} &{} \dots &{} 0 &{} 0 &{} 0\\ \beta _{2k-2}+\beta _{2k-3}+\beta _{2k-4} &{} \dots &{} 0 &{} 0 &{} 0\\ \beta _{2k}+\beta _{2k-1}+\beta _{2k-2} &{} \dots &{} 0 &{} 0 &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} \dots &{} \beta _{5}+\beta _{4}+\beta _{3} &{} \beta _{2}+\beta _{1}+\beta _{0} &{} 0\\ 0 &{} \dots &{} \beta _{4}+\beta _{3}+\beta _{2} &{} \beta _{1}+\beta _{0} &{}0 \\ 0 &{} \dots &{} \beta _{6}+\beta _{5}+\beta _{4} &{} \beta _{3}+\beta _{2}+\beta _{1} &{} \beta _{0} \end{array} \right] . \end{aligned}$$

Eigenvalues of matrix \(B_{k+1}\) are roots of the equation \(\left| B_{k+1}-\lambda I\right| =0\), therefore

$$\begin{aligned} B_{k+1}-\lambda I= & {} \left[ \begin{array}{ccccccccccccccccc} \beta _{2k+4}-\lambda &{} \beta _{2k+3}+\beta _{2k+2}+\beta _{2k+1} &{} \beta _{2k}+\beta _{2k-1}+\beta _{2k-2} \\ 0 &{} \beta _{2k+4}+\beta _{2k+3}-\lambda &{} \beta _{2k+2}+\beta _{2k+1}+\beta _{2k} \\ 0 &{} \beta _{2k+4}+\beta _{2k+3}+\beta _{2k+2} &{} \beta _{2k+1}+\beta _{2k}+\beta _{2k-1}\beta _{2k-1}-\lambda \\ 0 &{} \beta _{2k+4} &{} \beta _{2k+3}+\beta _{2k+2}+\beta _{2k+1}\\ \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} \right. \\&\left. \begin{array}{ccccccccccccccccc} \dots &{} 0 &{} 0 &{} 0 \\ \dots &{} 0 &{} 0 &{} 0\\ \dots &{} 0 &{} 0 &{} 0\\ \dots &{} 0 &{} 0 &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ \dots &{} \beta _{5}+\beta _{4}+\beta _{3}-\lambda &{} \beta _{2}+\beta _{1}+\beta _{0} &{} 0\\ \dots &{} \beta _{4}+\beta _{3}+\beta _{2} &{} \beta _{1}+\beta _{0}-\lambda &{}0 \\ \dots &{} \beta _{6}+\beta _{5}+\beta _{4} &{} \beta _{3}+\beta _{2}+\beta _{1} &{} \beta _{0}-\lambda \end{array} \right] . \end{aligned}$$

Now we only need to show that the eigenvalues of the matrix \(B_{k+1}\) are the eigenvalues of the matrix \(B_{k}\) and \(3^{k}\sum \nolimits _{i=0}^{4}\alpha _{i}\). Adding all the columns in the last column and extracting the factor \(\sum \nolimits _{i=0}^{4+2k}\beta _{i}-\lambda =3^{k}\sum \nolimits _{i=0}^{4}\alpha _{i}-\lambda \), then all the elements of last columns will be 1. Now by subtracting each previous row from its consecutive next row, we get

$$\begin{aligned} B_{k+1}-\lambda I= & {} \left( 3^{k}\sum \limits _{i=0}^{4}\alpha _{i}-\lambda \right) \left[ \begin{array}{ccccccccccccccccc} \beta _{2k+4}-\lambda &{} \beta _{2k+2}+\beta _{2k+1}-\beta _{2k+4}+\lambda \\ 0 &{} -\beta _{2k+2}-\lambda \\ 0 &{} \beta _{2k+3}+\beta _{2k+2} \\ 0 &{} \beta _{2k+4} \\ \vdots &{} \vdots \\ 0 &{} 0 \\ 0 &{} 0 \\ 0 &{} 0 \\ \end{array} \right. \\&\left. \begin{array}{ccccccccccccccccc} \beta _{2k-1}+\beta _{2k-2}-\beta _{2k+1}-\beta _{2k+2} &{} \dots &{} 0 &{} 0 &{} 0 \\ \beta _{2k+2}-\beta _{2k-1}+\lambda &{} \dots &{} 0 &{} 0 &{} 0\\ \beta _{2k}+\beta _{2k-1}-\beta _{2k+3}-\beta _{2k+2}-\lambda &{} \dots &{} 0 &{} 0 &{} 0\\ \beta _{2k+2}+\beta _{2k+1}-\beta _{2k+4} &{} \dots &{} 0 &{} 0 &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} \dots &{} \beta _{5}-\beta _{2}-\lambda &{} \beta _{2}+\lambda &{} 0\\ 0 &{} \dots &{} \beta _{3}+\beta _{2}-\beta _{5}-\beta _{6} &{} \beta _{0}-\beta _{2}+\beta _{3}-\lambda &{}0 \\ 0 &{} \dots &{} \beta _{6}+\beta _{5}+\beta _{4} &{} \beta _{3}+\beta _{2}+\beta _{1} &{} 1 \end{array} \right] . \end{aligned}$$

Multiplying the both sides of the above matrix with the transformation matrix

we get

We can write the above matrices in the form of a determinant, therefore the eigenvalues of the matrix \(B_{k+1}\) are the eigenvalues of the matrix \(B_{k}\) and \(3^{k}\sum \nolimits _{i=0}^{4}\alpha _{i}\). Hence the Proposition 9 has proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, R., Mustafa, G. A family of univariate ternary subdivision schemes with 5 parameters. SeMA 75, 457–473 (2018). https://doi.org/10.1007/s40324-017-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-017-0144-y

Keywords

Mathematics Subject Classification

Navigation