Skip to main content
Log in

A survey on dual decomposition methods

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper presents decomposition/coordination methods in which the coordination step is ensured by a Lagrange multiplier. The problem must be reformulated as a constrained convex minimization problem by introducing a suitable auxiliary unknown. The role of the auxiliary unknown is to ensure the splitting of the problem according to certain properties (linear/nonlinear, smooth/nonsmooth) or size (domain decomposition). The Lagrange multiplier, for the coordination step, is associated with the continuity condition. The resulting dual (Uzawa) algorithm replaces the original problem by a sequence of subproblems of smaller size or easier to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford (1958)

  • Bertsekas, D.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982)

    Google Scholar 

  • Bertsekas, D.: Nonlinear Programming. Athena Scientific, Nashua (1999)

    MATH  Google Scholar 

  • Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood (1973)

    MATH  Google Scholar 

  • Bresch, D., Koko, J.: An optimization-based domain decomposition method for nolinear wall laws in coupled systems. Math. Models Methods Appl. Sci. 14(7), 1085–1101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Cea, J., Glowinski, R.: Sur des méthodes d’optimisation par relaxation. R.A.I.R.O., R-3, 5–32 (1973)

    Google Scholar 

  • Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P.-G.: Mathematical Elasticity I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  • Cocu, M.: Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci. 22, 567–575 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Crouzeix, J.P., Keraghel, A., Sosa, W.: Programmación Matematica Diferenciable. Universidad Nacional de Ingenieria, Lima (2011)

    Google Scholar 

  • Daniel, J.: The Approximate Minimization of Functionals. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  • Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  • Dostál, Z., Haslinger, J., Kučera, R.: Implementation of the fixed point method in contact problems with Coulomb friction based on a dual splitting type technique. J. Comput. Appl. Math. 140, 245–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2D and 3D space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Ekland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  • Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM Reports 09-31, UCLA, Center for Applied Mathematics (2009)

  • Faille, I.: Modélisation bidimensionnelle de la génèse et de la migration des hydrocarbures dans un bassin sédimentaire. PhD Thesis, Université Joseph Fourier, Grenoble I (1992)

  • Farhat, C., Macedo, A., Lesoinne, M., Roux, F.-X.: Magoulès and de La Bourdonnaie A., Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput. Methods Appl. Mech. Eng. 184, 213–239 (2000)

  • Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)

    Google Scholar 

  • Geymonat, G., Krasucki, F., Marini, D., Vidrascu, M.: A domain decomposition method for bonded structures. Math. Models Methods Appl. Sci. 8(8), 1387–1402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  • Glowinski, R.: Numerical methods for fluids (part 3). In: Ciarlet, P.G., Lions, J.L. (eds.) Numerical Methods for Fluids (Part 3), vol. IX, pp. 3–1074. Handbook of Numerical Analysis. North-Holland, Amsterdam (2003)

  • Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  • Glowinski, R., Marocco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Num. 9(2), 41–76 (1975)

    MATH  Google Scholar 

  • Glowinski, R., Pan, T.-W., Periaux, J.: Distributed lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput. Methods. Appl. Mech. Eng. 151(1–2), 181–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.: A distributed lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods. Appl. Mech. Eng. 184(2–4), 241–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gunzburger, M.D., Lee, H.K.: An optimization based domain decomposition method for the Navier–Stokes equations. SIAM J. Numer. Anal. 37(5), 1455–1480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gunzburger, M.D., Heinkenschloss, M., Lee, H.K.: Solution of elliptic partial differential equations by an optimization-based domain decomposition method. Appl. Math. Comput. 113, 111–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gunzburger, M.D., Peterson, J., Kwon, H.: An optimization based domain decomposition method for partial differential equations. Comput. Math. Appl. 37(10), 77–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Haslinger, J., Dostál, Z., Kučera, R.: On the splitting type algorithm for the numerical realization of the contact problems with Coulomb friction. Comput. Methods. Appl. Mech. Eng. 191, 2261–2281 (2002)

    Article  MATH  Google Scholar 

  • Hestenes, M.R.: J. Optim. Theory Appl. 4, 303–320 (1968)

    Article  MathSciNet  Google Scholar 

  • Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2004)

  • Hughes, J.T., Ferency, R.M., Halquist, J.O.: Large-scale vectorized implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradient. Comput. Methods. Appl. Mech. Eng. 61, 215–248 (1987)

    Article  MATH  Google Scholar 

  • Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities of the first kind. MA2N. Math. Model. Numer. Anal. 37, 41–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

  • Kikuchi, N., Oden, J.T.: Contact problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied Mathematics. SIAM, Philadelphia (1988)

    Book  Google Scholar 

  • Kinderlehrer, D.: Remarks about Signorini’s problem in linear elasticity. Ann. Scuola Norm. Sup. Pisa 4, 605–645 (1981)

    MathSciNet  Google Scholar 

  • Koko, J.: An optimization based domain decomposition method for a bonded structure. Math. Models Methods Appl. Sci. 12(6), 857–870 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J.: Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows. J. Sci. Comput. 26(2), 195–216 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J.: Lagrange multiplier based domain decomposition methods for a nonlinear sedimentary basin problem. Comput. Geosci. 11, 307–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J.: A Lagrange multiplier decomposition method for a nonlinear sedimentary basin problem. Math. Comput. Model. 45, 440–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J.: Convergence analysis of optimization-based domain decomposition methods for a bonded structure. Appl. Numer. Math. 58, 69–87 (2008)

    Article  MathSciNet  Google Scholar 

  • Koko, J.: Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction. Comput. Methods. Appl. Mech. Eng. 198, 420–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J.: Uzawa block relaxation method for the unilateral contact problem. J. Comput. Appl. Math. 235, 2343–2356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Koko, J., Jehan-Besson, S.: An augmented lagrangian method for \({TV}_g\)+\({L}^1\)-norm minimization. J. Math. Imaging Vis. 38, 182–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H.K.: An optimization-based domain decomposition method for a nonlinear elliptic problem. Appl. Math. Comput. 113, 23–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Licht, C., Pratt, E., Raous, M.: Remarks on a numerical method for unilateral contact including friction. In: Unilateral Problems in Structural Analysis, Volume 101 of Internat. Ser. Numer. Math., pp. 129–144. Birkhäuser, Nasel (1991)

  • Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  • Luenberger, D.G.: Linear and Nonlinear Programming. Addison Wesley, Reading (1989)

    Google Scholar 

  • Magoulès, F., Roux, F.-X.: Lagrangian formulation of domain decomposition methods: a unified theory. Appl. Math. Model. 30, 593–615 (2006)

    Article  MATH  Google Scholar 

  • Maurer, H., Zowe, J.: First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16, 98–110 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Miglio, E., Quarteroni, A., Saleri, F.: Coupling of free-surface and groundwater flows. Comput. Fluids 32(1), 73–83 (2003)

    Article  MATH  Google Scholar 

  • Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

  • Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1968)

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press, Cambridge (1992)

  • Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)

  • Stadler, G.: Infinite-Dimensional Semi-Smooth Newton and Augmented Lagrangian Methods for Friction and Contact Problems in Elasticity. PhD thesis, Karl-Franzens University of Graz, Graz (2004)

  • Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203, 533–547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zakarian, E., Glowinski, R.: Domain decomposition methods applied to sedimentary basin modeling. Math. Comput. Model. 30, 153–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Koko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koko, J. A survey on dual decomposition methods. SeMA 62, 27–59 (2013). https://doi.org/10.1007/s40324-013-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-013-0007-0

Keywords

Mathematics Subject Classification (2000)

Navigation