Skip to main content
Log in

Limiting absorption principle and virtual levels of operators in Banach spaces

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We review the concept of the limiting absorption principle and its connection to virtual levels of operators in Banach spaces.

Résumé

Nous passons en revue le principe d’absorption limite et sa relation avec les niveaux virtuels pour des opérateurs dans les espaces de Banach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We suppose that in the twenties and thirties, between [41] and [75], the idea of the limiting absorption principle was being refined when V.S. Ignatowsky worked at St. Petersburg University, where in particular he taught mathematical theory of diffraction and likely was in contact with V.I. Smirnov. Let us mention that, besides his work on diffraction, Ignatowsky is known for his contributions to the theory of relativity (see [87]) and for developing optical devices while heading the theoretical division at GOMZ, the State Association for Optics and Mechanics (which later became known as “LOMO”). On 6 November 1941, during the blockade of St. Petersburg, Ignatowsky was arrested by NKVD (an earlier name of KGB), as a part of the “process of scientists”, and shot on 30 January 1942. (During this process, V.I. Smirnov was “credited” by NKVD the role of a Prime Minister in the government after the purportedly planned coup; Smirnov avoided the arrest because he was evacuated from St. Petersburg in August 1941, shortly before the blockade began.) As a result, Ignatowsky’s name has been unknown to many: the reference to his article disappeared from Smirnov’s “Course of higher mathematics” until post-1953 editions (see e.g. the English translation [76, §230]).

    Russians are used to such rewrites of the history, joking about the “History of the history of the Communist Party”, a reference to a mandatory and ever-changing Soviet-era ideological course in the first year of college. As the matter of fact, the very “Course of higher mathematics” mentioned above was started by V.I. Smirnov together with J.D. Tamarkin, with the first two volumes (published in 1924 and 1926) bearing both names, but after Tamarkin’s persecution by GPU (another earlier name of KGB) and his escape from the Soviet Union with smugglers over frozen lake Chudskoe in December 1924 [39], Tamarkin’s authorship eventually had to disappear. His coauthor Smirnov spent the next year pleading with the authorities (and succeeding!) for Tamarkin’s wife Helene Weichardt—who tried to follow her husband’s route with the smugglers over the icy lake but was intercepted at the border and jailed—to be released from prison and allowed to leave the Soviet Union to join her husband [7].

References

  1. E. Amaldi and E. Fermi, On the absorption and the diffusion of slow neutrons, Phys. Rev. 50 (1936), pp. 899–928.

    Article  Google Scholar 

  2. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space (volumes I and II), London and Scottish Academic Press, Edinburgh, 1981.

    MATH  Google Scholar 

  3. S. Agmon, Spectral properties of Schrödinger operators, in Actes, Congrès intern. Math., vol. 2, pp. 679–683, 1970.

  4. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), pp. 151–218.

  5. S. Agmon, On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, in Methods of Functional Analysis and Theory of Elliptic Equations, pp. 19–52, Liguori Editore, Naples, 1982.

  6. S. Agmon, A perturbation theory of resonances, Communications on Pure and Applied Mathematics 51 (1998), pp. 1255–1309.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Apushkinskaya and A. Nazarov, “Cherish the footprints of Man on the sand of Time!” (V.I. Smirnov), Algebra i Analiz 30 (2018), pp. 3–17.

  8. M. Ben-Artzi and A. Devinatz, The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (1987), pp. iv+70.

  9. S. Barth, A. Bitter, and S. Vugalter, On the Efimov effect in systems of one- or two-dimensional particles (2020),

  10. N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019.

  11. N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators (2021),

  12. Y. M. Berezanskii, Eigenfunction expansions of self-adjoint operators, Mat. Sb. (N.S.) 43 (85) (1957), pp. 75–126.

  13. D. Bollé, F. Gesztesy, and C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), pp. 175–204.

    MathSciNet  MATH  Google Scholar 

  14. D. Bollé, F. Gesztesy, and M. Klaus, Scattering theory for one-dimensional systems with\(\int dx\,V(x)=0\), J. Math. Anal. Appl. 122 (1987), pp. 496–518.

  15. D. Bollé, F. Gesztesy, and S. F. J. Wilk, A complete treatment of low-energy scattering in one dimension, J. Operator Theory 13 (1985), pp. 3–31.

    MathSciNet  MATH  Google Scholar 

  16. M. S. Birman, On the theory of self-adjoint extensions of positive definite operators, Matematicheskii Sbornik 80 (1956), pp. 431–450.

  17. M. S. Birman, On the spectrum of singular boundary-value problems, Mat. Sb. (N.S.) 55 (97) (1961), pp. 125–174.

  18. N. Boussaïd, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys. 268 (2006), pp. 757–817.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Boussaïd, On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case, SIAM J. Math. Anal. 40 (2008), pp. 1621–1670.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. E. Browder, On the spectral theory of elliptic differential operators. I, Mathematische Annalen 142 (1961), pp. 22–130.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Carleman, Sur la théorie mathématique de l’équation de Schrödinger, Almqvist & Wiksell, 1934.

  22. F. Chiarenza, E. Fabes, and N. Garofalo, Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proceedings of the American Mathematical Society 98 (1986), pp. 415–425.

    MathSciNet  MATH  Google Scholar 

  23. S. Cuccagna and D. Pelinovsky, Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem, J. Math. Phys. 46 (2005), pp. 053520, 15.

  24. B. Devyver, A spectral result for Hardy inequalities, Journal de Mathématiques Pures et Appliquées 102 (2014), pp. 813–853.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. B. Erdoğan and W. R. Green, The Dirac equation in two dimensions: dispersive estimates and classification of threshold obstructions, Comm. Math. Phys. 352 (2017), pp. 719–757.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. B. Erdoğan, W. R. Green, and E. Toprak, Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies, American Journal of Mathematics 141 (2019), pp. 1217–1258.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. M. Eidus, The principle of limit absorption, Math. Sb. 57 (1962), pp. 13–44.

    Google Scholar 

  28. D. M. Eidus, The principle of limit amplitude, Uspekhi Mat. Nauk 24 (1969), pp. 91–156.

    MathSciNet  MATH  Google Scholar 

  29. M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dyn. Partial Differ. Equ. 1 (2004), pp. 359–379.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. D. Faddeev, Mathematical questions in the quantum theory of scattering for a system of three particles, Trudy Mat. Inst. Steklov. 69 (1963), p. 122.

    MathSciNet  Google Scholar 

  31. E. Fermi, On the recombination of neutrons and protons, Physical Review 48 (1935), p. 570.

    Article  MATH  Google Scholar 

  32. I. Gelfand and A. Kostyuchenko, Eigenfunction expansions of differential and other operators, Dokl. Akad. Nauk 103 (1955), pp. 349–352.

    Google Scholar 

  33. J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré Sect. A (N.S.) 21 (1974), pp. 97–145.

  34. F. Gesztesy and R. Nichols, On absence of threshold resonances for Schrödinger and Dirac operators, Discrete Contin. Dyn. Syst. S 13 (2020), pp. 3427–3460.

    MathSciNet  MATH  Google Scholar 

  35. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, vol. 224 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1983, second edn.

  36. G. S. Guseinov, On the concept of spectral singularities, Pramana – J. Phys. 73 (2009), pp. 587–603.

  37. I. M. Gelfand and N. Y. Vilenkin, Some problems of harmonic analysis. Rigged Hilbert Spaces, Fizmatgiz, Moscow, 1961.

    Google Scholar 

  38. F. Gesztesy and Z. Zhao, On critical and subcritical Sturm–Liouville operators, J. Functional Analysis 98 (1991), pp. 311–345.

  39. E. Hille, Jacob David Tamarkin – His life and work, Bull. Amer. Math. Soc. 53 (1947), pp. 440–457.

  40. J. S. Howland, Puiseux series for resonances at an embedded eigenvalue, Pacific J. Math. 55 (1974), pp. 157–176.

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Ignatowsky, Reflexion elektromagnetischer Wellen an einem Draft, Ann. Phys. 18 (1905), pp. 495–522.

    Article  MATH  Google Scholar 

  42. A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions results in\({L}^{2}({\mathbf{R}}^{m})\), \(m\ge 5\), Duke Math. J. 47 (1980), pp. 57–80.

  43. A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in\({L}^2({\bf R }^{4})\), J. Math. Anal. Appl. 101 (1984), pp. 397–422.

  44. A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), pp. 583–611.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys. 13 (2001), pp. 717–754.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Kwon and S. Lee, Sharp resolvent estimates outside of the uniform boundedness range, Communications in Mathematical Physics 374 (2020), pp. 1417–1467.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. V. Konotop, E. Lakshtanov, and B. Vainberg, Designing lasing and perfectly absorbing potentials, Phys. Rev. A 99 (2019), p. 043838.

  48. M. Krein, On a general method of decomposing Hermite-positive nuclei into elementary products, Dokl. Akad. Nauk 53 (1946), pp. 3–6.

    MathSciNet  MATH  Google Scholar 

  49. M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Matematicheskii Sbornik 62 (1947), pp. 431–495.

    MathSciNet  MATH  Google Scholar 

  50. M. Krein, On hermitian operators with directed functionals, Akad. Nauk Ukrain. RSR. Zbirnik Prac Inst. Mat 10 (1948), pp. 83–106.

  51. S. T. Kuroda, An introduction to scattering theory, vol. 51 of Lecture Notes Series, Aarhus Universitet, Matematisk Institut, Aarhus, 1978.

  52. H. Landau, On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels, Journal d’Analyse Mathématique 28 (1975), pp. 335–357.

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Ljance, On differential operators with spectral singularities, in Seven Papers on Analysis, vol. 60 of Amer. Math. Soc. Transl. Ser. 2, pp. 185–225, Amer. Math. Soc., Providence, RI, 1967.

  54. M. Lucia and S. Prashanth, Criticality theory for Schrödinger operators with singular potential, J. Differential Equations 265 (2018), pp. 3400–3440.

  55. M. Lucia and S. Prashanth, Addendum to “Criticality theory for Schrödinger operators with singular potential” [J. Differ. Equ. 265 (2018) 3400–3440], J. Differential Equations 269 (2020), pp. 7211–7213.

  56. M. Murata, Structure of positive solutions to\((-{\Delta }+{V}) u= 0\)in\({\mathbb{R}}^{n}\)

  57. B. Nagy, Operators with spectral singularities, Journal of Operator Theory (1986), pp. 307–325.

  58. M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis, Tr. Mosk. Mat. Obs. 3 (1954), pp. 181–270.

    MathSciNet  Google Scholar 

  59. B. S. Pavlov, On a non-selfadjoint Schrödinger operator, in Problems of Mathematical Physics, No. 1, Spectral Theory, Diffraction Problems (Russian), pp. 102–132, Izdat. Leningrad. Univ., Leningrad, 1966.

  60. Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J. 57 (1988), pp. 955–980.

    Article  MathSciNet  MATH  Google Scholar 

  61. Y. Pinchover, On criticality and ground states of second order elliptic equations, II, J. Differential Equations 87 (1990), pp. 353–364.

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Pinchover, Large time behavior of the heat kernel and the behavior of the Green function near criticality for nonsymmetric elliptic operators, J. Funct. Anal. 104 (1992), pp. 54–70.

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Pinchover, Large time behavior of the heat kernel, J. Funct. Anal. 206 (2004), pp. 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Y. Povzner, On M.G. Krein’s method of directing functionals, Zapiski Inst. Mat. Meh. Harkov Gos. Univ. and Harkov. Mat. Obs. 28 (1950), pp. 43–52.

  65. A. Y. Povzner, On the expansion of arbitrary functions in characteristic functions of the operator\(-\Delta u+cu\), Mat. Sb. (N.S.) 32(74) (1953), pp. 109–156.

  66. Y. Pinchover and K. Tintarev, A ground state alternative for singular Schrödinger operators, J. Funct. Anal. 230 (2006), pp. 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Pinchover and K. Tintarev, Ground state alternative for\(p\)-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007), pp. 179–201.

  68. J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys. 61 (1978), pp. 149–168.

    Article  MathSciNet  MATH  Google Scholar 

  69. P. A. Rejto, On partly gentle perturbations. III, J. Math. Anal. Appl. 27 (1969), pp. 21–67.

  70. J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13 (1960), pp. 609–639.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Schwinger, Field theory of unstable particles, Annals of Physics 9 (1960), pp. 169–193.

    Article  MathSciNet  MATH  Google Scholar 

  72. B. Simon, Resonances in\(n\)-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), pp. 247–274.

  73. B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics 97 (1976), pp. 279–288.

    Article  MathSciNet  MATH  Google Scholar 

  74. B. Simon, Large time behavior of the\(l^p\)norm of Schrödinger semigroups, Journal of Functional analysis 40 (1981), pp. 66–83.

  75. V. Smirnov, Course of higher mathematics, vol. 4, OGIZ, Leningrad, Moscow, 1941, 1 edn.

  76. V. I. Smirnov, A Course of Higher Mathematics: Vol. 4, Integral Equations and Partial Differential Equations, Pergamon Press, 1964.

  77. A. Sommerfeld, Die Greensche Funktion der Schwingungslgleichung, Jahresbericht der Deutschen Mathematiker-Vereinigung 21 (1912), pp. 309–353.

    MATH  Google Scholar 

  78. A. J. W. Sommerfeld, Partielle Differetialgleichungen der Physik, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1948, 2 edn.

  79. A. Sveshnikov, Radiation principle, Dokl. Akad. Nauk 73 (1950), pp. 917–920.

    Google Scholar 

  80. E. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946.

    MATH  Google Scholar 

  81. A. Tikhonov and A. Samarskii, On the radiation principle, Zh. Eksper. Teoret. Fiz. 18 (1948), pp. 243–248.

    Google Scholar 

  82. A. Tikhonov and A. Samarskii, Equations of Mathematical Physics, Gostekhizdat, Moscow, 1951, 1 edn.

  83. P. Takáč and K. Tintarev, Generalized minimizer solutions for equations with the\(p\)-Laplacian and a potential term, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 138 (2008), pp. 201–221.

  84. B. Vainberg, Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations, Russian Mathematical Surveys 21 (1966), pp. 115–193.

    Article  MathSciNet  Google Scholar 

  85. B. R. Vainberg, On the analytical properties of the resolvent for a certain class of operator-pencils, Mat. Sb. (N.S.) 119 (1968), pp. 259–296.

  86. B. R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as\(t\rightarrow \infty \)of solutions of non-stationary problems, Russian Mathematical Surveys 30 (1975), p. 1.

  87. V. P. Vizgin and G. E. Gorelik, The reception of the Theory of Relativity in Russia and the USSR, in The comparative reception of relativity, pp. 265–326, Springer, 1987.

  88. M. I. Vishik, On general boundary problems for elliptic differential equations, Tr. Mosk. Mat. Obs. 1 (1952), pp. 187–246.

    MathSciNet  Google Scholar 

  89. T. Weidl, Remarks on virtual bound states for semi-bounded operators, Comm. Partial Differential Equations 24 (1999), pp. 25–60.

    Article  MathSciNet  MATH  Google Scholar 

  90. H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Mathematische Annalen 68 (1910), pp. 220–269.

    Article  MathSciNet  MATH  Google Scholar 

  91. E. P. Wigner, Über die Streuung von Neutronen an Protonen, Zeitschrift für Physik 83 (1933), pp. 253–258.

    Article  MATH  Google Scholar 

  92. D. R. Yafaev, On the theory of the discrete spectrum of the three-particle Schrödinger operator, Mat. Sb. (N.S.) 23 (1974), pp. 535–559.

  93. D. R. Yafaev, The virtual level of the Schrödinger equation, in Mathematical questions in the theory of wave propagation, 7, vol. 51, pp. 203–216, Nauka, St. Petersburg, 1975.

  94. D. R. Yafaev, Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation, Mathematics of the USSR–Sbornik 46 (1983), pp. 267–283.

    Article  MATH  Google Scholar 

  95. D. R. Yafaev, Mathematical scattering theory, vol. 158 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010.

  96. K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys. 259 (2005), pp. 475–509.

  97. O. Yamada, On the principle of limiting absorption for the Dirac operator, Publ. Res. Inst. Math. Sci. 8 (1972/73), pp. 557–577.

Download references

Acknowledgements

The authors are most grateful to Gregory Berkolaiko, Kirill Cherednichenko, Fritz Gesztesy, Bill Johnson, Alexander V. Kiselev, Mark Malamud, Alexander Nazarov, Yehuda Pinchover, Roman Romanov, Thomas Schlumprecht, Vladimir Sloushch, Tatiana Suslina, Cyril Tintarev, Boris Vainberg, and Dmitrii Yafaev for their attention and advice. The authors are indebted to the anonymous referee for bringing to their attention several important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Comech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To Alexander Shnirelman on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussaid, N., Comech, A. Limiting absorption principle and virtual levels of operators in Banach spaces. Ann. Math. Québec 46, 161–180 (2022). https://doi.org/10.1007/s40316-021-00181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00181-7

Keywords

Mathematics Subject Classification

Navigation