Skip to main content
Log in

On quantum jumps and attractors of the Maxwell–Schrödinger equations

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schrödinger equations. We discuss possible dynamical interpretation of these postulates relying on a new general mathematical conjecture on global attractors of G-invariant nonlinear Hamiltonian partial differential equations with a Lie symmetry group G. This conjecture is inspired by the results on global attractors of nonlinear Hamiltonian PDEs obtained by the author together with his collaborators since 1990 for a list of model equations with three basic symmetry groups: the trivial group, the group of translations, and the unitary group \(\mathbf {U}(1)\). We sketch these results.

Résumé

Notre objectif est de discuter du problème de l’interprétation mathématique des postulats (ou "principes") de base de la mécanique quantique: les transitions aux orbites stationnaires quantiques, la dualité onde-particule et l’interprétation probabiliste, dans le contexte des équations semi-classiques autoconsistantes de Maxwell–Schrödinger. Nous discutons de l’interprétation dynamique possible de ces postulats en nous appuyant sur une nouvelle conjecture mathématique générale sur les attracteurs globaux d’équations aux dérivées partielles hamiltoniennes non linéaires G-invariantes avec un groupe de symétrie de Lie G. Cette conjecture est inspirée des résultats sur les attracteurs globaux des EDP non linéaires hamiltoniennes obtenus par l’auteur et ses collaborateurs depuis 1990 pour une liste d’équations modèles avec trois groupes de symétrie de base: le groupe trivial, le groupe des translations, et le groupe unitaire U(1). Nous esquissons ces résultats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Quantum Mechanics

  1. N. Bohr, Discussion with Einstein on epistemological problems in atomic physics, pp 201–241 in: Schilpp, P.A., Ed., Albert Einstein: Philosopher-Scientist, Vol 7, Library of Living Philosophers, Evanston Illinois, 1949.

  2. M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1966.

  3. R. Chiao, P. Kwiat, Heisenberg’s Introduction of the ’Collapse of the Wavepacket’ into Quantum Mechanics, arXiv:quant-ph/0201036.

  4. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press, Oxford, 1999.

  5. A. Einstein, P. Ehrenfest, Quantentheoretische Bemerkungen zum Experiment von Stern und Gerlach, Zeitschrift für Physik 11 (1922), 31–34.

  6. W. Heisenberg, The Physical Principles of the Quantum Theory, University of Chicago Press, Chicago, 1930 (reprinted by Dover Publications).

  7. W. Heisenberg, Der derzeitige Stand der nichtlinearen Spinortheorie der Elemen- tarteilchen, Acta Phys. Austriaca 14 (1961), 328–339.

  8. W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles, Interscience, London, 1966.

  9. A. Komech, Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013.

  10. A. Komech, Lectures on Quantum Mechanics for Mathematicians, arXiv:1907.05786.

  11. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press Princeton, 1955.

  12. J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachusets, 1967.

  13. E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. d. Phys. I, II 79 (1926) 361, 489; III 80 (1926) 437; IV 81 (1926) 109. (English translation in E. Schrödinger, Collected Papers on Wave Mechanics, Blackie & Sohn, London, 1928.)

  14. H. Spohn, Dynamics of Charged Particles and their Radiation Field, Cambridge University Press, Cambridge, 2004.

Differential equations

  1. V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989.

  2. H. Goldstein, C.P. Poole, J. Safko, Pearson, New York, 2001.

  3. M. Grillakis, J. Shatah, and W. Walter, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), 160–197.

  4. M. Grillakis, J. Shatah, and W. Walter, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), 308–348.

  5. A.I. Komech, E.A. Kopylova, Dispersion Decay and Scattering Theory, Wiley, Hoboken, New Jersey, 2012.

Maxwell--Schr\"odinger equations

  1. I. Bejenaru, D. Tataru, Global well-posedness in the energy space for the Maxwell–Schrödinger system, Comm. Math. Phys. 288 (2009), 145–198.

  2. G.M. Coclite, V. Georgiev, Solitary waves for Maxwell–Schrödinger equations, Electronic Journal of Differential Equations 94 (2004), 1–31.

  3. Y. Guo, K. Nakamitsu, W. Strauss, Global finite-energy solutions of the Maxwell–Schrödinger system, Comm. Math. Phys. 170 (1995), no. 1, 181–196.

  4. R.D. Jackson, Classical Electrodynamics, Wiley, New York, 1999.

  5. M. Nakamura, T. Wada, Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Comm. Math. Phys. 276 (2007), 315–339.

  6. M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge university press, Cambridge, 1997.

Diffraction of electrons

  1. R. Bach, D. Pope, S.-H. Liou, H. Batelaan, Controlled double-slit electron diffraction, New J. Phys. 15 (2013), 033018.

  2. L. Biberman, N. Sushkin, V. Fabrikant, Diffraction of successively travelling electrons, Doklady AN SSSR 66 (1949), no.2, 185–186, 1949.

  3. R. G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Physical Review Letters 5 (1960), 3–5.

  4. S. Frabboni, G.C. Gazzadi, G. Pozzi, Young’s double-slit interference experiment with electrons, Amer. J. Phys. 75 (2007), Issue 11, 1053–1055.

Shift of Aharonov-Bohm

  1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959), no. 3, 485–491.

  2. W. Ehrenberg, R.E. Siday, The Refractive Index in Electron Optics and the Principles of Dynamics, Proc. Phys. Soc., Section B, 62 (1949), 8–21.

  3. B. Helffer, Effet d’Aharonov Bohm sur un état borné de l’Equation de Schrödinger, Comm. Math. Phys. 119 (1988), 315–329.

  4. S. Olariu, I.I. Popesku, The quantum effects of electromagnetic fluxes, Rev. Mod. Phys. 57 (1985), 339–436.

  5. M. Peshkin, A. Tonomura, The Aharonov–Bohm Effect, Lecture Notes in Physics, Vol. 340, Springer, Berlin, 1989.

  6. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, H. Ezawa, Demonstration of single-electron buildup of an interference pattern, Amer. J. Phys. 57 (1989), no. 2, 117–120.

Omega-Hyperon

  1. V.E. Barnes et al., Observation of a hyperon with strangeness minus three, Phys. Rev. Lett. 12 (1964), 204–206.

  2. M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. (2) 125 (1962), 1067–1084.

  3. F. Halzen and A. Martin, Quarks and leptons: an introductory course in modern particle physics, John Wiley & Sons, New York, 1984.

  4. Y. Ne’eman, Unified interactions in the unitary gauge theory, Nuclear Phys. 30 (1962), 347–349.

  5. J.C. Pati and A. Salam, Lepton number as the fourth “color”, Phys. Rev. D 10 (1974), 275–289.

Global attraction to stationary states

  1. A.I. Komech, On the stabilization of interaction of a string with a nonlinear oscillator, Moscow Univ. Math. Bull. 46 (1991), no. 6, 34–39.

  2. A.I. Komech, On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl., 196 (1995), 384–409.

  3. A.I. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal. 149 (1999), 213–228.

  4. A.I. Komech, H. Spohn, Long-time asymptotics for the coupled Maxwell–Lorentz equations, Comm. Partial Differential Equations 25 (2000), 559–584.

  5. A.I. Komech, H. Spohn, M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations 22 (1997), 307–335.

  6. I.M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys. 153 (1993), 297–320.

Global attraction to solitons

  1. W. Eckhaus, A. van Harten, The Inverse Scattering Transformation and the Theory of Solitons, vol. 50 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam–New York, 1981.

  2. V.M. Imaykin, A.I. Komech, N.J. Mauser, Soliton-type asymptotics for the coupled Maxwell–Lorentz equations, Ann. Henri Poincaré P (2004), 1117–1135.

  3. V.M. Imaykin, A.I. Komech, H. Spohn, Scattering theory for a particle coupled to a scalar field, Discrete Contin. Dyn. Syst. 10 (2004), 387–396.

  4. A.I. Komech, N.J. Mauser, A.P. Vinnichenko, Attraction to solitons in relativistic nonlinear wave equations, Russ. J. Math. Phys. 11 (2004), 289–307.

  5. A.I. Komech, H. Spohn, Soliton-like asymptotics for a classical particle interacting with a scalar wave field, Nonlinear Anal. 33 (1998), 13–24.

  6. G.L. Lamb Jr., Elements of soliton theory, John Wiley & Sons, Inc., New York, 1980.

Global attraction to stationary orbits

  1. Nabile Boussaïd and Andrew Comech, Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models, Commun. Pure Appl. Anal. 17 (2018), 1331–1347.

  2. A. Comech, Weak attractor of the Klein–Gordon field in discrete space-time interacting with a nonlinear oscillator, Discrete Contin. Dyn. Syst. 33 (2013), 2711–2755.

  3. A. Comech, On global attraction to solitary waves. Klein–Gordon equation with mean field interaction at several points, J. Differential Equations 252 (2012), 5390–5413.

  4. A. Comech, Solutions with compact time spectrum to nonlinear Klein–Gordon and Schrödinger equations and the Titchmarsh theorem for partial convolution, Arnold Mathematical Journal 5 (2019), 315–338.

  5. V.M. Imaykin, A.I. Komech, H. Spohn, Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit, Monatsh. Math. 142 (2004), 143–156.

  6. A.I. Komech, On attractor of a singular nonlinear \(\mathbf{U}(1)\)-invariant Klein–Gordon equation, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003, 599–611.

  7. A.I. Komech, Attractors of nonlinear Hamilton PDEs, Discrete and Continuous Dynamical Systems A 36 (2016), no. 11, 6201–6256.

  8. A.I. Komech, A.A. Komech, On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator, C. R. Math. Acad. Sci. Paris 343 (2006), 111–114.

  9. A.I. Komech, A.A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal. 185 (2007), 105–142.

  10. A.I. Komech, A.A. Komech, On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl. (9) 93 (2010), 91–111.

  11. A.I. Komech, A.A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 855–868.

  12. A.I. Komech, A.A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal. 42 (2010), 2944–2964.

  13. A.I. Komech, E.A. Kopylova, Attractors of Hamiltonian nonlinear partial differential equations, Russ. Math. Surv. 75 (2020), no. 1, 1–87.

  14. A.I. Komech, E. A. Kopylova, Attractors of Hamiltonian Nonlinear Partial Differential Equations, Cambridge University Press, Cambridge, 2021.

  15. E.A. Kopylova, Global attraction to solitary waves for Klein–Gordon equation with concentrated nonlinearity, nonlinearity 30 (2017), no. 11, 4191–4207.

  16. E.A. Kopylova, A.I. Komech, On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities Dynamics of PDE, 16 (2019), no. 2, 105–124.

  17. E.A. Kopylova, A.I. Komech, Global attractor for 1D Dirac field coupled to nonlinear oscillator, Comm. Math. Phys. 375 (2020), no. 1, 573–603.

Download references

Acknowledgements

The author thanks Andrew Comech, Sergey Kuksin, Alexander Shnirelman and Herbert Spohn for numerous fruitful discussions.

Author information

Authors and Affiliations

Authors

Additional information

To Sasha Shnirelman on the occasion of his 75th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komech, A.I. On quantum jumps and attractors of the Maxwell–Schrödinger equations. Ann. Math. Québec 46, 139–159 (2022). https://doi.org/10.1007/s40316-021-00179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00179-1

Keywords

Mathematics Subject Classification

Navigation