Skip to main content
Log in

Conjugate and cut points in ideal fluid motion

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

Two fluid configurations along a flow are conjugate if there is a one parameter family of geodesics (fluid flows) joining them to infinitesimal order. Geometrically, they can be seen as a consequence of the (infinite dimensional) group of volume preserving diffeomorphisms having sufficiently strong positive curvatures which ‘pull’ nearby flows together. Physically, they indicate a form of (transient) stability in the configuration space of particle positions: a family of flows starting with the same configuration deviate initially and subsequently re-converge (resonate) with each other at some later moment in time. Here, we first establish existence of conjugate points in an infinite family of Kolmogorov flows—a class of stationary solutions of the Euler equations—on the rectangular flat torus of any aspect ratio. The analysis is facilitated by a general criterion for identifying conjugate points in the group of volume preserving diffeomorphisms. Next, we show non-existence of conjugate points along Arnold stable steady states on the annulus, disk and channel. Finally, we discuss cut points, their relation to non-injectivity of the exponential map (impossibility of determining a flow from a particle configuration at a given instant) and show that the closest cut point to the identity is either a conjugate point or the midpoint of a time periodic Lagrangian fluid flow.

Résumé

Deux configurations de fluides le long d’un écoulement sont conjuguées s’il existe une famille à un paramètre de géodésiques (écoulements fluides) les reliant à un ordre infinitésimal. D’un point de vue géométrique, ces géodésiques peuvent être considérées comme une conséquence du groupe (de dimension infinie) de difféomorphismes préservant le volume ayant des courbures positives suffisamment fortes pour “rapprocher” les écoulements voisins. Physiquement, ils indiquent une forme de stabilité (transitoire) dans l’espace de configuration des positions des particules: une famille d’écoulements commençant avec la même configuration dévie initialement et les écoulements reconvergent les uns avec les autres ensuite (résonnent) à un moment ultérieur du temps. Ici, nous établissons d’abord l’existence de points conjugués dans une famille infinie d’écoulements de Kolmogorov - une classe de solutions stationnaires des équations d’Euler - sur le tore rectangulaire plat de tout rapport de forme. L’analyse est facilitée par un critère général pour l’identification des points conjugués dans le groupe des difféomorphismes préservant le volume. Ensuite, nous montrons la non-existence de points conjugués le long des états stables d’Arnold sur l’anneau, le disque et le canal. Enfin, nous discutons des points de coupure, de leur relation avec la non-injectivité de la carte exponentielle (impossibilité de déterminer un écoulement à partir d’une configuration de particules à un instant donné) et nous montrons que le point de coupure le plus proche de l’identité est soit un point conjugué, soit le point milieu d’un écoulement fluide Lagrangien périodique en temps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See for example his 1982 Crafoord Prize lecture.

  2. The only exception is when the eigenfunction corresponds to the smallest eigenvalue on the domain. In this case, the laminar solution is the unique stationary solution at all Reynolds number which, moreover, attracts all orbits at long times.

  3. In fact, (a minor modification of) the work of Chepyzhov, Vishik and Zelik [10] shows that the sequence of global attractors \(\{\mathcal {A}^\nu \}_{\nu >0}\) for 2D Navier–Stokes with forcing strength commensurate with the viscosity \(\nu \) converges to a so-called trajectory attractor for the unforced Euler equations. See also the work of Glatt-Holtz et al. [16] for an analogous statement in a stochastically forced setting. This attractor is known to be supported on \(H^1\) velocity fields whose corresponding vorticity is bounded (the Yudovich space). It is not expected to be supported on velocity fields with Sobolev regularity \(s>n/2+1\), which is the setting in which the Euler equations can currently be understood geometrically. Thus, the precise connection with \(\mathscr {D}_\mu ^s(M)\) is not yet clear and building a geometric theory for Yudovich solutions may be of crucial importance for advancing our understanding of high-Reynolds number 2D turbulence.

  4. A. Shnirelman, private communication.

  5. The multiplicity of a conjugate point is the dimension of the kernel of the differential of \(\mathrm {exp}_e\) at that point.

  6. In 3D hydrodynamics both cut and conjugate points are plentiful. On the one hand (local) cut points exist on any sufficiently long geodesic [40]. On the other hand conjugate points cluster or even densely fill out finite geodesic segments [13, 35]. This is in sharp contrast with 2D hydrodynamics and it is tempting to relate this phenomenon to the failure of Arnold’s stability criterion due to indefiniteness of the quadratic form [36]. In fact, it can be show that (with \(v \in T_e\mathscr {D}_\mu ^s(M)\) and \( \Vert v\Vert _{L^2}^2=1\)) we have

    $$\begin{aligned} m_c^{u_0,v}&= -2E''_{u_0}(w) + \big \langle [\mathrm {ad}_v, \mathrm {ad}_v^*] u_0, u_0 \big \rangle _{L^2} \end{aligned}$$

    where \(w = \mathrm {ad}_v^*u_0\), which may prove useful in investigating this issue.

  7. In fact, the curvature is identically zero. This follows from the fact that the solid body rotation on the disk has velocity which is an isometry of the Euclidean space, so that the sectional curvatures must be non-negative [26]. Combining these two facts gives the claim.

  8. There are examples of compact Riemannian manifolds whose conjugate and cut loci are disjoint, cf. [46].

References

  1. D.V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967); translation by the American Mathematical Society, Providence, R.I. 1969 iv+235 pp.

  2. V. Arnold, Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 316-361.

    Article  Google Scholar 

  3. V. Arnold, Arnold’s Problems, Springer-Verlag, Berlin 2004.

    Google Scholar 

  4. V. Arnold and L. Meshalkin, A. N. Kolmogorov’s Seminar on Selected Problems of Analysis (1958/1959), Usp. Mat. Nauk 15 (1960), 247-250.

  5. V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998; 2nd ed. (in Russian), MCNMO, Moscow 2020.

  6. A. Babin and M. Vishik, Attractors of partial differential evolution equations and estimates of their dimension, Russian Math. Surveys 38.4 (1983), 151.

    Article  Google Scholar 

  7. G. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Rational Mech. Anal. 176 (2005), 149-163.

    Article  MathSciNet  Google Scholar 

  8. P. Constantin, T.D. Drivas and D. Ginsberg, Flexibility and rigidity in steady fluid motion, Communications in Mathematical Physics (2021): 1-43.

  9. P. Constantin, I. Kukavica and V. Vicol, Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations, Ann. de l’Institut Poincare, Analyse non lineaire 33 (2016).

  10. V.V. Chepyzhov, M.I. Vishik and S.V. Zelik, Strong trajectory attractors for dissipative Euler equations, Journal math. Pures Appl. 96 (2011), 395-407.

    Article  MathSciNet  Google Scholar 

  11. D. Ebin, Integrability of perfect fluid motion, Commun. Pure Appl. Math. 36 (1983), 37-54.

    Article  MathSciNet  Google Scholar 

  12. D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970), 102-163.

    Article  MathSciNet  Google Scholar 

  13. D. Ebin, G. Misiołek and S. Preston, Singularities of the exponential map on the volume-preserving diffeomorphism group, Geom. Funct. Anal. 16 (2006), 850-868.

    Article  MathSciNet  Google Scholar 

  14. S. Friedlander and M. Vishik, Instability criteria for steady flows of a perfect fluid, Chaos 2 (1992), 455-460.

    Article  MathSciNet  Google Scholar 

  15. U. Frisch and V. Zheligovsky, A very smooth ride in a rough sea, Comm. Math. Phys. 326 (2014), 499-505.

    Article  MathSciNet  Google Scholar 

  16. N. Glatt-Holtz, V. Sverak and V. Vicol, On inviscid limits for the stochastic Navier-Stokes equations and related models, Arch. Rational Mech. Anal. 217 (2015), 619-649.

    Article  MathSciNet  Google Scholar 

  17. F. Hamel and N. Nadirashvili, Circular flows for the Euler equations in two-dimensional annular domains, arXiv preprint arXiv:1909.01666 (2019).

  18. E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863-877.

    Article  MathSciNet  Google Scholar 

  19. B. Khesin, J. Lenells, G. Misiołek and S. Preston, Curvatures of Sobolev metrics on diffeomorphism groups, Pure Appl. Math. Quart. 9 (2013), 291-332.

    Article  MathSciNet  Google Scholar 

  20. W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. Math. 69 (1959), 654-666.

    Article  MathSciNet  Google Scholar 

  21. L. Lichtenstein, Uber einige Hilfssätze der Potential theorie I. Math. Zeitschrift 23, 72-78 (1925).

    Article  MathSciNet  Google Scholar 

  22. R. Lan, The Minimizer of the Dirichlet Integral, Diss. Concordia University, 2012.

    Google Scholar 

  23. L. Lichtenfelz, Normal forms for the \(L^2\) Riemannian exponential map on diffeomorphism groups, Int. Math. Res. Not. 2018 (2018) no. 6, 1730-1753.

    MathSciNet  MATH  Google Scholar 

  24. A. Lukatski, On the curvature of the group of measure-preserving diffeomorphisms of an \(n\)-dimensional torus, Russ. Math. Surv. 36 (1981), 179-180.

    Article  MathSciNet  Google Scholar 

  25. L. Meshalkin and Y. Sinai, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, Jour. Appl. Math. Mech. 25.6 (1961), 1700-1705.

    Article  MathSciNet  Google Scholar 

  26. G. Misiołek, Stability of flows of ideal fluids and the geometry of groups of diffeomorphisms, Indiana Univ. Math. J. 42 (1993), 215-235.

    Article  MathSciNet  Google Scholar 

  27. G. Misiołek, Conjugate points in \(\mathscr {D}_\mu (\mathbb{T}^2)\), Proc. Amer. Math. Soc. 124 977-982 (1996)

  28. G. Misiołek, The exponential map near conjugate points in 2D hydrodynamics, Arnold Math. J. 1 (2015), 243-251.

    Article  MathSciNet  Google Scholar 

  29. G. Misiołek and S. Preston, Fredholm properties of Riemannian exponential maps on diffeomorphism groups, Invent. math. 179 (2010), 191-227.

    Article  MathSciNet  Google Scholar 

  30. A. Morgulis, A. Shnirelman and V. Yudovich, Loss of smoothness and inherent instability of 2D inviscid fluid flows, Comm. Partial Differential Eqns 33 (2008), 943-968.

    Article  MathSciNet  Google Scholar 

  31. N. Nadirashvili, On stationary solutions of two-dimensional Euler equation, arXiv preprint arXiv:1206.5312 (2012).

  32. H. Omori, On the group of diffeomorphisms of a compact manifold, Proc. Symp. Pure Math. 15 1970, 167-183.

    Article  MathSciNet  Google Scholar 

  33. S. Preston, Nonpositive curvature on the area-preserving diffeomorphism group, J. Geom. Phys. 53 (2005), 226-248.

    Article  MathSciNet  Google Scholar 

  34. S. Preston, On the volumorphism group, the first conjugate point is always the hardest, Commun. Math. Phys. 267, (2006), 493-513.

    Article  MathSciNet  Google Scholar 

  35. P. Washabaugh and S. Preston, The geometry of axisymmetric ideal fluid flows with swirl, Arnold Math. J. 3 (2016), 175-185.

    Article  MathSciNet  Google Scholar 

  36. L. Sadun and M. Vishik, The spectrum of the second variation of the energy for an ideal incompressible fluid, Phys. Lett. A 182 4-6 (1993), 394-398.

    Article  MathSciNet  Google Scholar 

  37. P. Serfati, Equations d’Euler et holomorphies a faible regularite spatiale, C.R. Acad. Sci. Paris 320 Serie I (1994), 175-180.

  38. A. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. (NS) 128 (1985), 82-109.

    MathSciNet  Google Scholar 

  39. A. Shnirelman, Lattice theory and flows of ideal incompressible fluids, Russ. J. Math. Phys. 1 (1993), 105-114.

    MathSciNet  MATH  Google Scholar 

  40. A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. funct. anal. 4 (1994).

  41. A. Shnirelman, On the analyticity of particle trajectories in the ideal incompressible fluid, arXiv preprint arXiv:1205.5837 (2012).

  42. N. Smolentsev, Diffeomorphism groups of compact manifolds, J. Math. Sci. 146 (2007), 6213-6312.

    Article  MathSciNet  Google Scholar 

  43. T. Tauchi and T. Yoneda, Existence of a conjugate point in the incompressible Euler flow on an ellipsoid, Math. Soc. Japan (2021).

  44. T. Tauchi and T. Yoneda, Some positivity results of the curvature on the group corresponding to the incompressible Euler equation with Coriolis force, Prog. Theor. Exp. Phys. (2021).

  45. J. Vanneste, and W. R. Young. On the energy of elliptical vortices. Physics of Fluids 22.8 (2010): 081701.

  46. A. Weinstein, The cut locus and the conjugate locus of a Riemannian manifold, Ann. Math. 87 (1968), 29-41.

    Article  MathSciNet  Google Scholar 

  47. W. Wolibner, Un theoréme sur l’existence du mouvement plan d’un fluide parfait, homogéne, incompressible, pendant un temps infiniment long, Math. Zeit. 37 (1933), 698-726.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for helpful comments and Alexandra Haedrich for help with translating the abstract into French. This work was done while TY was an associate professor at the University of Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Misiołek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To Sasha, with admiration and respect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drivas, T.D., Misiołek, G., Shi, B. et al. Conjugate and cut points in ideal fluid motion. Ann. Math. Québec 46, 207–225 (2022). https://doi.org/10.1007/s40316-021-00176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-021-00176-4

Keywords

Mathematics Subject Classification

Navigation