Skip to main content
Log in

An explicit construction of non-tempered cusp forms on \(O(1,8n+1)\)

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We explicitly construct non-holomorphic cusp forms on the orthogonal group of signature \((1,8n+1)\) for an arbitrary natural number n as liftings from Maass cusp forms of level one. In our previous works [31] and [24] the fundamental tool to show the automorphy of the lifting was the converse theorem by Maass. In this paper, we use the Fourier expansion of the theta lifts by Borcherds [4] instead. We also study cuspidal representations generated by such cusp forms and show that they are irreducible and that all of their non-archimedean local components are non-tempered while the archimedean component is tempered, if the Maass cusp forms are Hecke eigenforms. Our non-archimedean local theory relates Sugano’s local theory [39] to non-tempered automorphic forms or representations of a general orthogonal group in a transparent manner.

Résumé

Cet article décrit une construction explicite de formes paraboliques non-holomorphes sur le groupe orthogonal de signature \((1, 8n + 1)\), pour un entier n arbitraire, à partir de relèvements de formes de Maass paraboliques de niveau un. Cela fait suite aux travaux [31] et [24], où l’outil fondamental pour démontrer l’automorphie du relèvement est le “converse theorem” de Maass. Cet article utilise les séries de Fourier associées aux relèvements theta de Borcherds [4]. Nous étudions aussi les représentations cuspidales engendrées par de telles formes paraboliques et montrons qu’elles sont irréductibles et que toutes leurs composantes locales non-archimédiennes sont non-tempérées, alors que la composante archimédienne est tempérée, lorsque la forme de Maass de départ est vecteur propre pour les opérateurs de Hecke. Notre théorie locale non-archimédenne relie de maniére plus transparente la théorie locale de Sugano [39] aux formes et aux représentations automorphes non-tempérées d’un groupe orthogonal général.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge university press, New York (1999)

    Google Scholar 

  2. Arthur, J.: The Endoscopic Classification of Representations, Orthogonal and Symplectic Groups. Colloquium Publications. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  3. Atobe, H., Gan, W.T.: On the local Langlands correspondence and Arthur conjecture for even orthogonal groups. Representat. Theory 21, 354–415 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borcherds, R.E.: Automorphic forms with singularities on Grassmanians. Invent. Math. 132, 491–562 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartier, P.: Representations of \({\mathfrak{p}}\)-adic groups: a survey. Proc. Symp. Pure Math. 33(part 1), 111–155 (1979)

    MathSciNet  Google Scholar 

  6. Collingwood, D.: Representations of Rank one Lie Groups. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  7. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms. Vol. I, Based, in Part, on Notes Left by Harry Bateman and Complied by the Staff of the Bateman Manuscript Project. McGraw-Hill Book Company, Inc., New York, Toronto, London (1954)

    MATH  Google Scholar 

  8. Furusawa, M., Morimoto, K.: On special Bessel periods and the Gross-Prasad conjecture for \(SO(2n+1)\times SO(2)\). Math. Ann. 368(1-2), 561–586 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Gan, W.T., Qiu, Y., Takeda, S.: The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula. Invent. Math. 198, 739–831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gritsenko, V.: Fourier-Jacobi functions of \(n\) variables. J. Soviet Math. 53, 243–252 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Harish Chandra: Harmonic analysis on real reductive groups III: The Maass-Selberg relations and the Plancherel formula. Ann. Math. 104, 117–201 (1976)

  12. Howe, R., Tan, E.C.: Homogeneous functions on light cones: Infinitesimal structure of some degenerate principal series representations. Bulletin Amer. Math. Soc. 28(1), 1–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ikeda, T.: On the lifting of elliptic cusp forms to Siegel modular forms of degree \(2n\). Ann. Math. 154, 641–681 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Ikeda, T.: On the lifting of Hermitian modular forms. Compositio Math. 144, 1107–1154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwaniec, H.: Spectral Methods of Automorphic Forms, 2nd edn. American Mathematical Society, Revista Matemática Iberoamericana, Providence (2002)

    MATH  Google Scholar 

  16. Kim, H., Yamauchi, T.: Cusp forms on the exceptional group of type \(E_7\). Compositio Math. 152, 223–254 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Knapp, A.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  18. Kudla, S., Millson, John J.: Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math. 71, 121–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kudla, S., Rallis, S.: A regularized Siegel-Weil formula: the first term identity. Ann. Math. 140, 1–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math. 49, 149–165 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Langlands, R.: On the classification of irreducible representations of real algebraic groups. Representation theory and Harmonic Analysis on Semisimple Lie Groups (Mathematical Surveys and Monographs, 31). American Mathematical Society, Providence, pp. 101–170 (1989)

  22. Maass, H.: Automorphe Funktionen von meheren Veränderlichen und Dirchletsche Reihen. Abh. Math. Sem. Univ. Hamburg 16(3–4), 72–100 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyake, T.: Modular forms. Springer Verlag, Berlin (2006)

    MATH  Google Scholar 

  24. Muto, M., Narita, H., Pitale, A.: Lifting to \(GL(2)\) over a division quaternion algebra and an explicit construction of CAP representations. Nagoya Math. J. 222(01), 137–185 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Narita, H.: Fourier expansion of holomorphic modular forms on classical Lie groups of tube type along the minimal parabolic subgroup. Abh. Math. Sem. Univ. Hamburg 74, 253–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narita, H., Pitale, A., Schmidt, R.: Irreducibility criteria for local and global representations. Proc. Amer. Math. Soc. 141, 55–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Novodvorsky, E., Piatetskii-Shapiro, I.I.: Generalized Bessel models for the symplectic group of rank 2. Math. Sb. 90(132), 246–256 (1973)

    MathSciNet  Google Scholar 

  28. Oda, T.: On modular forms associated with indefinite quadratic forms of signature \((2,n-2)\). Math. Ann. 231, 97–144 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Oliver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  30. Piatetskii-Shapiro, I.I., Soudry, D.: Special representations of rank one orthogonal group. Israel J. Math. 64(3), 276–314 (1988)

    Article  MathSciNet  Google Scholar 

  31. Pitale, A.: Lifting from \({\widetilde{\text{ SL }(2)}}\) to \({\rm GSpin}(1,4)\). Internat. Math. Res. Notices 2005(63), 3919–3966 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Rallis, S.: Langlands’ functoriality and the Weil representation. Amer. J. Math. 104(3), 469–515 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rallis, S.: Injectivity properties of liftings associated to Weil representations. Compositio Math. 52(2), 139–169 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Rallis, S., Schiffmann, G.: Automorphic forms constructed from the Weil representation: Holomorphic case. Amer. J. Math. 100(5), 1049–1122 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rallis, S., Schiffmann, G.: On a relation between \({\widetilde{SL}}_2\)-cusp forms and cusp forms on tube domains associated to orthogonal groups. Trans. A. M. S. 263(1), 1–58 (1981)

    MATH  Google Scholar 

  36. Satake, I.: Theory of spherical functions on reductive groups over \(p\)-adic field. Inst. Hautes Etudes Sci. Publ. Math. 18, 5–69 (1963)

    MathSciNet  MATH  Google Scholar 

  37. Serre, J.P.: Cours d’arithmétique, Presses universitaire de France, Paris (1970)

  38. Shimura, G.: Arithmetic and Analytic Theories of Quadratic forms and Clifford Groups, Mathematical Surveys and Monographs, vol. 109. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  39. Sugano, T.: Jacobi forms and the theta lifting. Commentarii Math. Univ. St. Pauli 44(1), 1–58 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Yamana, S.: On the lifting of elliptic cusp forms to cusp forms on quaternion unitary groups. J. Number Theory 130, 2480–2527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second named author would like to express his profound gratitude to Prof. Takashi Sugano and Prof. Masao Tsuzuki for their comments or discussions related to this study, especially for the non-archimedean local theory. The second named author was partially supported by Grand-in-Aid for Scientific Research (C) 16K05065, Japan Society for the Promotion of Science and by Waseda University Grant for Special Research Projects (Project number: 2018S-084). This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. The first named author would like to thank the MPIM at Bonn for organizing the third Japanese-German number theory workshop, when some of the works here were discussed and completed. The first named author was partially supported by the DFG grant BR-2163/4-2, an NSF postdoctoral fellowship, and the LOEWE research unit USAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiro-aki Narita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: cuspidal representations generated by Oda–Rallis-Schiffmann lifts

Appendix: cuspidal representations generated by Oda–Rallis-Schiffmann lifts

We have used Sugano’s non-archimedean local theory in [39, Section 7] to study the Hecke theory of the cusp forms given by our lifting and the cuspidal representations generated by them. His local theory is originally motivated by studying non-archimedean local aspect of the lifting theory of Oda [28] and Rallis-Schiffmann [35]. We can therefore expect that the results in Sects. 4 and 5 naturally hold also for the lifting by Oda and Rallis-Schiffmann. In this appendix, still restricting ourselves to “the case of even unimodular lattices”, we carry out the argument similar to Sects. 4 and 5 to deduce similar results for the case of Oda–Rallis-Schiffmann lifting.

1.1 Basic notation

Let \(({{\mathbb {Z}}}^{8n},S)\) be an even unimodular lattice with a positive definite symmetric matrix S and put \(Q_1:= \begin{pmatrix} &{} &{} 1\\ &{} -S &{} \\ 1 &{} &{} \end{pmatrix}\). We then let \(Q_2:= \begin{pmatrix} &{} &{} 1\\ &{} Q_1 &{} \\ 1 &{} &{} \end{pmatrix}\) and let \({{\mathcal {G}}}=O(Q_2)\) (respectively \({{\mathcal {H}}}=O(Q_1)\)) be the orthogonal group over \({{\mathbb {Q}}}\) defined by \(Q_2\) (respectively \(Q_1\)). We introduce several algebraic subgroups of \({{\mathcal {G}}}\). We first introduce the maximal parabolic subgroup \({{\mathcal {P}}}\) with a Levi decomposition \({{\mathcal {P}}}={{\mathcal {N}}}_1\rtimes {{\mathcal {L}}}_1\), where \({{\mathcal {N}}}_1\) and \({{\mathcal {L}}}_1\) are defined by the groups of \({{\mathbb {Q}}}\)-rational points as follows:

$$\begin{aligned} {{\mathcal {N}}}_{1}({{\mathbb {Q}}})= & {} \left\{ \left. {n_{Q_1}(x)}=\begin{pmatrix} 1 &{} -{}^txQ_1 &{} -\frac{1}{2}{}^txQ_1x\\ &{} 1_{8n+2} &{} x\\ &{} &{} 1 \end{pmatrix}~\right| ~x\in {{\mathbb {Q}}}^{8n+2}\right\} ,\\ {{\mathcal {L}}}_{1}({{\mathbb {Q}}})= & {} \left\{ \left. \begin{pmatrix} a &{} &{} \\ &{} h &{} \\ &{} &{} a^{-1} \end{pmatrix}~\right| ~a\in {{\mathbb {Q}}}^{\times },~h\in O(Q_1)({{\mathbb {Q}}})\right\} . \end{aligned}$$

For \(w\in {{\mathbb {Q}}}^{8n}\) let \({n_0(w):= \begin{pmatrix} 1 &{} {}^twS &{} \frac{1}{2}{}^twSw\\ &{} 1_{8n} &{} w\\ &{} &{} 1 \end{pmatrix}}\) and \({n_{1}(w):= \begin{pmatrix} 1 &{} &{} \\ &{} n_0(w) &{} \\ &{} &{} 1 \end{pmatrix}}\). We then introduce the maximal unipotent subgroup \({{\mathcal {N}}}\) of \({{\mathcal {G}}}\) defined by its group of \({{\mathbb {Q}}}\)-rational points

$$\begin{aligned} {{\mathcal {N}}}({{\mathbb {Q}}}):=\{n(x,w)\mid x\in {{\mathbb {Q}}}^{8n+2},~w\in {{\mathbb {Q}}}^{8n}\}, \end{aligned}$$

where \(n(x,w):=n_{Q_1}(x)n_{1}(w)\).

Let \(G_{\infty }\) be the real Lie group \({{\mathcal {G}}}({{\mathbb {R}}})\). To describe an Iwasawa decomposition of \(G_{\infty }\) we introduce

$$\begin{aligned} A_{\infty }:=\left\{ \left. \begin{pmatrix} a_1 &{} &{} &{} &{} \\ &{} a_2 &{} &{} &{} \\ &{} &{} 1_{8n} &{} &{} \\ &{} &{} &{} a_2^{-1} &{} \\ &{} &{} &{} &{} a_1^{-1} \end{pmatrix}~\right| ~a_1,~a_2\in {{\mathbb {R}}}^{\times }_+\right\} \end{aligned}$$

and a maximal compact subgroup

$$\begin{aligned} K_{\infty }:=\{k\in G_{\infty }\mid {}^tkRk=R\} \end{aligned}$$

of \(G_{\infty }\), where \({R= \begin{pmatrix} 1_2 &{} &{} \\ &{} S &{} \\ &{} &{} 1_2 \end{pmatrix}}\) is the majorant of \(Q_2\). We then have an Iwasawa decomposition of \(G_{\infty }\) as follows:

$$\begin{aligned} G_{\infty }={{\mathcal {N}}}({{\mathbb {R}}})A_{\infty }K_{\infty }. \end{aligned}$$

We next introduce the symmetric domain of type IV, which is identified with the quotient \(G_{\infty }/K_{\infty }\). We follow [25, Sect. 1.4] to describe it. Let \(B_{Q_1}\) be the bilinear form on \(V\times V\) defined by \(Q_1\) with \(V={{\mathbb {R}}}^{8n+2}\) and let \((V,\tau )\) be the Euclidean Jordan algebra equipped with the trace form

$$\begin{aligned} \tau :V\times V\ni (x,y)\mapsto \tau (x,y)=2B_{Q_1}(x\circ y,e), \end{aligned}$$

where

$$\begin{aligned} x\circ y:=B_{Q_1}(x,e)y+B_{Q_1}(y,e)x-B_{Q_1}(x,y)e,\quad (x,y\in V) \end{aligned}$$

with \({}^te=(\frac{1}{\sqrt{2}},0,\cdots ,0,\frac{1}{\sqrt{2}})\). This Euclidean Jordan algebra has the determinant \(\Delta \) given by

$$\begin{aligned} \Delta (v):=\frac{1}{2}B_{Q_1}(v,v)\quad (v\in V). \end{aligned}$$

Let us introduce the symmetric cone \(\Omega :=\{v\in V\mid B_{Q_1}(v,v)>0,~B_{Q_1}(v,e)>0\}\) of V. Then the symmetric domain of type IV corresponding to \(G_{\infty }\) is realized as \({{\mathcal {D}}}:=V+\sqrt{-1}\Omega \). The Lie group \(G_{\infty }\) acts on \({{\mathcal {D}}}\) by the linear fractional transformation, for which we use the notation \(g\cdot z\) for \((g,z)\in G_{\infty }\times {{\mathcal {D}}}\). Let \(J(g,z)\in {{\mathbb {C}}}\) be the automorphy factor for \((g,z)\in G_{\infty }\times {{\mathcal {D}}}\). For the definition of \(g\cdot z\) and J(gz) see [10, Sect. 1]. We can identify \(G_{\infty }/K_{\infty }\) with \({{\mathcal {D}}}\) by \(G_{\infty }\ni g\mapsto g\cdot (\sqrt{-1}e)\in {{\mathcal {D}}}\).

1.2 Review on Oda–Rallis-Schiffmann lifting

By \(S_{\kappa }(SL_2({{\mathbb {Z}}}))\) we denote the space of holomorphic cusp forms on the complex upper half plane \({{\mathfrak {h}}}\) of weight \(\kappa \) with respect to \(SL_2({{\mathbb {Z}}})\). To review the Oda–Rallis-Schiffmann lift from these holomorphic cusp forms we introduce the archimedean Whittaker function \(W_{\lambda ,\kappa }\) on \(G_{\infty }\) with \(\lambda \in \Omega \) and a positive integer \(\kappa \) by

$$\begin{aligned}&W_{\lambda ,\kappa }(n(x,w)ak)\\&\qquad :=J(k_{\infty },\sqrt{-1}e)^{-\kappa }\Delta (\mathrm{Im}({n_{1}(w)}a\cdot \sqrt{-1}e))^{\frac{\kappa }{2}}\\&\quad \qquad \exp (2\pi \sqrt{-1}\tau (\lambda ,x+\sqrt{-1}\mathrm{Im}({n_{1}(w)}a\cdot \sqrt{-1}e)) \end{aligned}$$

for \((x,w,a,k)\in {{\mathbb {R}}}^{8n+2}\times {{\mathbb {R}}}^{8n}\times A_{\infty }\times K_{\infty }\), where \(\mathrm{Im}(z)\) denotes the imaginary part of \(z\in {{\mathcal {D}}}\).

Let \(f\in S_{\kappa -4n+2}(SL_2({{\mathbb {Z}}}))\) be given by the q-expansion \(f(\tau )=\sum _{m\ge 1}c(m)q^m\) (thus \(\kappa \) has to be even and \(\kappa -4n+2\ge 12\)). We put \(|\lambda |_{Q_1}:=\sqrt{\frac{1}{2}{}^t\lambda Q_1\lambda }=\sqrt{\Delta (\lambda )}\) for \(\lambda \in V\). We introduce a smooth function \(F_f\) on \(G_{\infty }\) by

$$\begin{aligned} F_f(g_{\infty })=\sum _{\lambda \in {{\mathbb {Z}}}^{8n+2}\cap \Omega }C_{\lambda }W_{\lambda ,\kappa }(g_{\infty }), \end{aligned}$$

where

$$\begin{aligned} C_{\lambda }=\sum _{d|d_{\lambda }}d^{\kappa -1}c(\frac{|\lambda |_{Q_1}^2}{d^2}) \end{aligned}$$

with the greatest common divisor \(d_{\lambda }\) of the entries of \(\lambda \). For the maximal lattice \({{\mathbb {Z}}}^{\oplus 2}\oplus {{\mathbb {Z}}}^{8n}\oplus {{\mathbb {Z}}}^{\oplus 2}\) with respect to \(Q_2\) we introduce an arithmetic subgroup

$$\begin{aligned} \Gamma _S:=\{\gamma \in {{\mathcal {G}}}({{\mathbb {Q}}})\mid \gamma ({{\mathbb {Z}}}^{\oplus 2}\oplus {{\mathbb {Z}}}^{8n}\oplus {{\mathbb {Z}}}^{\oplus 2})={{\mathbb {Z}}}^{\oplus 2}\oplus {{\mathbb {Z}}}^{8n}\oplus {{\mathbb {Z}}}^{\oplus 2}\}. \end{aligned}$$

We now state the following theorem by Oda [28, Corollary to Theorem 5] and Rallis-Schiffmann [35, Theorem 5.1].

Theorem 6.1

(Oda, Rallis-Schiffmann) For \(\kappa >8n+4\) the smooth function \(F_f\) is a holomorphic cusp form of weight \(\kappa \) with respect to \(\Gamma _S\), lifted from the domain \({{\mathcal {D}}}\) to the group \(G_{\infty }\).

1.3 Cuspidal representations generated by Oda–Rallis-Schiffmann lifts

1.4 (1) Adelization of \(F_f\)

To consider the cuspidal representation generated by \(F_f\) we adelize \(F_f\). We carry out it following the argument similar to Sect. 3.3.

Let \(K_f:=\prod _{p<\infty }K_p\) with \(K_p:=\{g\in {{\mathcal {G}}}({{\mathbb {Q}}}_p)\mid g{{\mathbb {Z}}}_p^{8n+4}={{\mathbb {Z}}}_p^{8n+4}\}\). We remark that the strong approximation theorem of \({{\mathcal {G}}}({{\mathbb {A}}})\) with respect to the maximal compact subgroup \(K_f\) holds, from which we deduce that the set of \(\Gamma _S\)-cusps is in bijection with \({{\mathcal {H}}}({{\mathbb {Q}}})\backslash {{\mathcal {H}}}({{\mathbb {A}}})/{{\mathcal {H}}}({{\mathbb {R}}})U_f\) with \(U_f:=\prod _{p<\infty }U_p~(U_p:=\{h\in {{\mathcal {H}}}({{\mathbb {Q}}}_p)\mid h{{\mathbb {Z}}}_p^{8n+2}={{\mathbb {Z}}}_p^{8n+2}\})\). This is nothing but Lemma  2.1 for the case of \({{\mathcal {G}}}=O(Q_2)\).

For \(h=(h_p)_{p\le \infty }\in {{\mathcal {H}}}({{\mathbb {A}}}_f)\) we put \(L_h:=(\prod _{p<\infty }h_p{{\mathbb {Z}}}_p^{8n+2}\times {{\mathbb {R}}}^{8n+2})\cap {{\mathbb {Q}}}^{8n+2}\) and write \(h=au^{-1}\) with \((a,u)\in GL_{8n+2}({{\mathbb {Q}}})\times (\prod _{p<\infty }SL_{8n+2}({{\mathbb {Z}}}_p)\times SL_{8n+2}({{\mathbb {R}}}))\). For \(\lambda \in L_h\setminus \{0\}\) we denote by \(d_{\lambda }\) the greatest common divisor of the entries of \(a^{-1}\lambda \in {{\mathbb {Z}}}^{8n+2}\), which is checked to be well-defined by the same argument as the proof of Lemma 3.2.

We introduce a function \(A_{\lambda }\) indexed by \(\lambda \in {{\mathbb {Q}}}^{8n+2}\setminus \{0\}\) as follows:

where \(\Lambda \) denotes the standard additive character of \({{\mathbb {A}}}/{{\mathbb {Q}}}\). This \(A_{\lambda }\) is verified to be well-defined function on \({{\mathcal {G}}}({{\mathbb {A}}}_f)\) similarly as in the proof of Lemma 3.2. With this \(A_{\lambda }\) we adelize \(F_f\) by

$$\begin{aligned} F_f(g)=\sum _{\lambda \in {{\mathbb {Q}}}^{8n+2}\setminus \{0\}}A_{\lambda }(g_f)W_{\lambda ,\kappa }(g_{\infty }) \end{aligned}$$

for \(g=g_fg_{\infty }\in {{\mathcal {G}}}({{\mathbb {A}}})\) with \((g_f,g_{\infty })\in {{\mathcal {G}}}(A_f)\times G_{\infty }\). By the definition of the adelized \(F_f\), \(F_f\) is right \(K_f\)-invariant. By the standard argument in terms of the strong approximation theorem the left \(\Gamma _S\)-invariance of the non-adelic \(F_f\) then implies the left \({{\mathcal {G}}}({{\mathbb {Q}}})\)-invariance of the adelic \(F_f\). The adelized \(F_f\) is a cusp form on \({{\mathcal {G}}}({{\mathbb {A}}})\).

1.5 (2) Cuspidal representation generated by \(F_f\)

To determine explicitly the cuspidal representation of \({{\mathcal {G}}}({{\mathbb {A}}})\) generated by \(F_f\) we first provide an explicit formula for Hecke eigenvalues of the adelized \(F_f\). We can apply the non-archimedean local theory in Sect. 4.1 to our situation that \(m=4n+2,~q=p,~F={{\mathbb {Q}}}_p,\) and \(\partial =n_0=0\). The p-adic group \({{\mathcal {G}}}({{\mathbb {Q}}}_p)\) is viewed as \(G_{4n+2}\) in the notation of Sect.  4.1. We need the lemma as follows:

Lemma 6.2

As a function on \({{\mathcal {G}}}({{\mathbb {Q}}}_p)(\simeq G_{4n+2})\), \(A_{\lambda }(g)\in {{{\mathcal {W}}}}^{{{\mathcal {M}}}}_{\lambda }\), where we regard \(g\in {{\mathcal {G}}}({{\mathbb {Q}}}_p)\) as an element in \({{\mathcal {G}}}({{\mathbb {A}}})\) in the usual manner.

We then state the theorem on the Hecke eigenvalues of \(F_f\).

Theorem 6.3

Suppose that f is a Hecke eigenform and let \(\lambda _p\) be the Hecke eigenvalue of f at \(p<\infty \).

  1. (1)

    \(F_f\) is a Hecke eigenform.

  2. (2)

    Let \(\mu _i\) be the Hecke eigenvalue of the Hecke operator for \(C_{4n+2}^{(i)}\) with \(1\le i\le 4n+2\). We have

    $$\begin{aligned} \mu _i= {\left\{ \begin{array}{ll} p^{4n+1}(p^{-(\kappa -4n-1)}\lambda _p^2+p^{4n}+\cdots +p+p^{-1}+\cdots +p^{-4n})&{}(i=1)\\ |R_{4n+1}^{(i-1)}|\left( \mu _1-\displaystyle \frac{p^{i-1}-1}{p^i-1}f_{4n+2,1}\right) &{}(2\le i\le 4n+2) \end{array}\right. }. \end{aligned}$$

Proof

We give just an overview of the proof since it is quite similar to the case of the lifting from the Maass cusp forms. The only difference is the recurrence relation for the Fourier coefficients of the holomorphic cusp form f as follows:

Lemma 6.4

Let \(f(\tau )=\sum _{n\ge 1}c(m)q^m\in S_{\kappa -(4n-2)}(SL_2({{\mathbb {Z}}}))\) be a Hecke eigenform. We have

$$\begin{aligned} c(p^2m)&=(\lambda _p^2-p^{\kappa -(4n-1)})c(m)- {{\left\{ \begin{array}{ll} p^{\kappa -(4n-1)}\lambda _pc(m/p)&{}(p|m)\\ 0&{}(p\not \mid m) \end{array}\right. }},\\ c(p^2m)&=(\lambda _p^2-2p^{\kappa -(4n-1)})c(m)-p^{2(\kappa -(4n-1))}c(m/p^2), \end{aligned}$$

where we assume \(p^2|m\) for the second formula.

This follows from the well known recurrence relation of the Fourier coefficients (cf. [37, Chapitre VII, Sect. 5.3, Corollaire 2]).

With this lemma and [39, Theorem 7.4] for \({{\mathcal {W}}}_{\lambda }^{{{\mathcal {F}}}}\) on \(G_{4n+2}\) (similar to Proposition 4.9), we get the explicit formula for \(\mu _1\) by the proof similar to that of Proposition 4.13. The formula for \(\mu _i\) with \(i\ge 2\) is then an immediate consequence from Proposition  4.6. \(\square \)

1.6 Cuspidal representation generated by \(F_f\)

We now state the theorem quite similar to Theorem  5.6.

Theorem 6.5

Let \(\pi _{F_f}\) be the cuspidal representation generated by \(F_f\) and suppose that f is a Hecke eigenform.

  1. (1)

    The representation \(\pi _{F_f}\) is irreducible and thus has the decomposition into the restricted tensor product \(\otimes '_{v\le \infty }\pi _v\) of irreducible admissible representations \(\pi _v\).

  2. (2)

    For \(v=p<\infty \), \(\pi _p\) is the spherical constituent of the unramified principal series representation of \(G_p\) with the Satake parameter

    $$\begin{aligned} {\text {diag}}\left( \left( {\frac{\lambda '_p+\sqrt{{\lambda '}_p^2-4}}{2}}\right) ^2,p^{4n},\cdots ,p,1,1,p^{-1},\cdots ,p^{-4n},\left( {\frac{\lambda '_p+\sqrt{{\lambda '}_p^2-4}}{2}}\right) ^{-2}\right) , \end{aligned}$$

    where \(\lambda '_p:=p^{-\frac{\kappa -(4n-1)}{2}}\lambda _p\).

  3. (3)

    For every finite prime \(p<\infty \), \(\pi _p\) is non-tempered while \(\pi _{\infty }\) is tempered.

Proof

Also for this theorem we sketch the proof since it is similar to that of Theorem 5.6. Let \({{\mathfrak {g}}}_{\infty }\) be the Lie algebra of \(G_{\infty }\). The right translations of \(F_f\) by \(G_{\infty }\) generate the anti-holomorphic discrete series representation \(\pi _{\kappa }\) with minimal \(K_{\infty }\)-type given by

$$\begin{aligned} K_{\infty }\ni k\mapsto J(k,\sqrt{-1}e)^{-\kappa } \end{aligned}$$

as a \(({{\mathfrak {g}}}_{\infty },K_{\infty })\)-module, and it is irreducible. This is known as a classical fact due to Rallis-Schiffmann (for instance see [34, Sect. 6]). Since \(F_f\) is a Hecke eigenform under the assumption we see the irreducibility of \(\pi _F\) by [26, Theorem 3.1]. This is nothing but the first assertion. Due to Theorem  6.3 the rest of the assertions are settled by the proof similar to parts 2 and 3 of Theorem  5.6. For the third assertion we remark that the discrete series representations of semi-simple real Lie groups are a well-known class of tempered representations. \(\square \)

As we deduce Corollary 5.7 from Theorem  5.6 we have the following as an immediate consequence from Theorem 6.5.

Corollary 6.6

For any prime p the local p-factor \(L_p(\pi _{F_f},{\text {St}},s)\) of the standard L-function for \(\pi _{F_f}\) (or \(F_f\)) is written as

$$\begin{aligned} L_p(\pi _{F_f},{\text {St}},s)=L_p({\text {sym}}^2(f),s)\prod _{j=0}^{8n}\zeta _p(s+j-4n), \end{aligned}$$

where \(L_p({\text {sym}}^2(f),s)\) is the p-factor of the symmetric square L-function for f.

Remark 6.7

This result is essentially obtained in [39, Theorem 8.1], which expresses the standard L-functions of the Oda–Rallis-Schiffmann lifts in the Jacobi form formulation in terms of L-functions of Jacobi forms. Sugano has remarked that \(L_p({\text {sym}}^2(f),s)\) is a local factor of the L-function of some Jacobi form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Narita, Ha. & Pitale, A. An explicit construction of non-tempered cusp forms on \(O(1,8n+1)\). Ann. Math. Québec 44, 349–384 (2020). https://doi.org/10.1007/s40316-019-00121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-019-00121-6

Keywords

Mathematics Subject Classification

Navigation