Skip to main content
Log in

On Sandon-type metrics for contactomorphism groups

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

For certain contact manifolds admitting a 1-periodic Reeb flow we construct a conjugation-invariant norm on the universal cover of the contactomorphism group. With respect to this norm the group admits a quasi-isometric monomorphism of the real line. The construction involves the partial order on contactomorphisms and symplectic intersections. This norm descends to a conjugation-invariant norm on the contactomorphism group. As a counterpoint, we discuss conditions under which conjugation-invariant norms for contactomorphisms are necessarily bounded.

Resume

On construit une norme invariante par conjugaison sur le revêtement universel du groupe des contactomorphismes associé à certaines variétés de contact admettant un flot de Reeb 1-périodique. Par rapport à cette norme, le groupe admet un monomorphisme quasi-isométrique des réels. La construction utilise l’ordre partiel sur les contactomorphismes et des propriétés des intersections symplectiques. Cette norme induit une norme invariante par conjugaison sur le groupe des contactomorphismes. Par contraste avec cette construction, nous discutons de conditions sous lesquelles des normes invariantes par conjugaison sur des groupes des contactomorphismes sont nécessairement bornées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, although the study of \(\succeq \) on \(\widetilde{\mathcal {G}}(V)\) was initiated in [14], the terminology orderable was introduced later in [15] and was applied to V itself; to avoid confusion we specify instead the relevant group.

  2. See the argument in Remark 1.23 of that paper and the proof of Theorem 1.3 on the same page.

References

  1. Albers, P., Frauenfelder, U.: A nondisplaceable Lagrangian torus in \(T^\ast S^2\). Comm. Pure Appl. Math. 61, 1046–1051 (2008)

    Article  MathSciNet  Google Scholar 

  2. Albers, P., Frauenfelder, U.: Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 2(1), 77–98 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albers, P., Merry, W.: Translated points and Rabinowitz Floer homology. J. Fixed Point Theory Appl. 13(1), 201–214 (2013)

    Article  MathSciNet  Google Scholar 

  4. Banyaga, A.: The structure of classical diffeomorphism groups. Mathematics and its Applications, 400. Kluwer Academic Publishers Group, Dordrecht (1997)

  5. Biran, P., Cieliebak, K.: Lagrangian embeddings into subcritical Stein manifolds. Israel J. Math. 127, 221–244 (2002)

    Article  MathSciNet  Google Scholar 

  6. Biran, P., Cieliebak, K.: Symplectic topology on subcritical manifolds. Comm. Math. Helv. 76, 712–753 (2002)

    Article  MathSciNet  Google Scholar 

  7. Borman, S., Zapolsky, F.: Quasi-morphisms on contactomorphism groups and contact rigidity. Geom. Topol. 19(1), 365–411 (2015)

    Article  MathSciNet  Google Scholar 

  8. Burago, S., Ivanov, D., Polterovich, L.: Conjugation-invariant norms on groups of geometric origin. Groups of diffeomorphisms. Adv. Stud. Pure Math. 52, 221–250 (2008)

    MATH  Google Scholar 

  9. Colin, V., Sandon, S.: The discriminant length for contact and Legendrian isotopies. J. Eur. Math. Soc. (JEMS) 17(7), 1657–1685 (2015)

    Article  MathSciNet  Google Scholar 

  10. Eliashberg, Y.: Contact 3-manifolds twenty years since. J. Martinet’s work. Ann. Inst. Fourier (Grenoble) 42, 165–192 (1992)

    Article  MathSciNet  Google Scholar 

  11. Eliashberg, Y.: Topological characterization of Stein manifolds of dimension \(>2\). Internat. J. Math. 1(1), 29–46 (1990)

    Article  MathSciNet  Google Scholar 

  12. Eliashberg, Y., Gromov, M., Convex symplectic manifolds. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, : Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc. Providence, R I 1991, 135–162 (1989)

  13. Eliashberg, Y., Hofer, H., Salamon, D.: Lagrangian intersections in contact geometry. Geom. Funct. Anal. 5, 244–269 (1995)

    Article  MathSciNet  Google Scholar 

  14. Eliashberg, Y., Polterovich, L.: Partially ordered groups and geometry of contact transformations. Geom. Funct. Anal. 10, 1448–1476 (2000)

    Article  MathSciNet  Google Scholar 

  15. Eliashberg, Y., Kim, S.S., Polterovich, L.: Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol. 10, 1635–1747 (2006)

    Article  MathSciNet  Google Scholar 

  16. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988)

    Article  MathSciNet  Google Scholar 

  17. Ginzburg, V.: On Maslov class rigidity for coisotropic submanifolds. Pacific J. Math. 250, 139–161 (2011)

    Article  MathSciNet  Google Scholar 

  18. Givental, A.: The nonlinear Maslov index. Geometry of low-dimensional manifolds, 2. Durham : London Math. Soc. Lecture Note Ser. 151(1990), 35–43 (1989)

  19. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  Google Scholar 

  20. Granja, G., Karshon, Y., Pabiniak, M., Sandon, S.: Givental’s non-linear Maslov index on lens spaces. arXiv:1704.05827 (2017)

  21. Laudenbach, F., Sikorav, J.-C.: Persistence of intersection with the zero section during a Hamiltonian isotopy into a cotangent bundle. Invent. Math. 82(2), 349–357 (1985)

    Article  MathSciNet  Google Scholar 

  22. Laudenbach, F., Sikorav, J.-C.: Hamiltonian disjunction and limits of Lagrangian submanifolds. Internat. Math. Res. Notices 4, 161–168 (1994)

    Article  MathSciNet  Google Scholar 

  23. Milin, I.: Orderability and Non-squeezing in Contact Geometry. Ph.D. thesis, Stanford University (2008)

  24. Moser, J.: A fixed point theorem in symplectic geometry. Acta Math. 141(1–2), 17–34 (1978)

    Article  MathSciNet  Google Scholar 

  25. Müller, S., Spaeth, P.: Topological contact dynamics I: symplectization and applications of the energy-capacity inequality. Adv. Geom. 15(3), 349–380 (2015)

    Article  MathSciNet  Google Scholar 

  26. Paternain, G.P., Polterovich, L., Siburg, K.F.: Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory. Mosc. Math. J. 3(2), 593–619 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Polterovich, L.: The geometry of the group of symplectic diffeomorphism. Lectures in Mathematics. ETH-Zurich, Birkhauser, Basel (2001)

    Book  Google Scholar 

  28. Rybicki, T.: Commutators of contactomorphisms. Adv. Math. 225(6), 329–336 (2010)

    Article  MathSciNet  Google Scholar 

  29. Rybicki, T.: Bi-invariant metric on the strict contactomorphism group. arXiv:1202.5897 (2012) (Now withdrawn)

  30. Rybicki, T.: Hofer metric from the contact point of view. arXiv:1304.1971 (2013) (Now withdrawn)

  31. Sandon, S.: An integer valued bi-invariant metric on the group of contactomorphisms of \(R^{2n}\times S^1\). J. Topol. Anal. 2, 327–339 (2010)

    Article  MathSciNet  Google Scholar 

  32. Sandon, S.: Contact homology, capacity and non-squeezing in \(\mathbb{R}^{2n} \times S^1\) via generating functions. Ann. Inst. Fourier (Grenoble) 61, 145–185 (2011)

    Article  MathSciNet  Google Scholar 

  33. Sandon, S.: Equivariant homology for generating functions and orderability of lens spaces. J. Symplectic Geom. 9(2), 123–146 (2011)

    Article  MathSciNet  Google Scholar 

  34. Sandon, S.: On iterated translated points for contactomorphisms of \(\mathbb{R }^{2n+1}\) and \(\mathbb{R }^{2n} \times S^1\). Internat. J. Math. 23(2) (2012)

  35. Shelukhin, E.: The Hofer norm of a contactomorphism. J. Symplectic. Geom. arXiv:1411.1457 (2014) (to appear)

  36. Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36, 225–255 (1976)

    Article  MathSciNet  Google Scholar 

  37. Tsuboi, T.: On the simplicity of the group of contactomorphisms. Groups of diffeomorphisms, Adv. Stud. Pure Math. 52, 491–504. Soc. Japan, Tokyo (2008)

  38. Usher, M.: Hofer geometry and cotangent fibers. J. Symplectic Geom. 12(3), 619–656 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zapolsky, F.: Geometric structures on contactomorphism groups and contact rigidity in jet spaces. Internat. Math. Res. Notices 2013(20), 4687–4711 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The results of the present paper have been presented at the AIM workshop ‘Contact topology in higher dimensions’ in May, 2012. We thank the organizers, J. Etnyre, E. Giroux and K. Niederkrueger, for the invitation and AIM for the excellent research atmosphere. We are grateful to V. Colin, Y. Karshon, and S. Sandon for very helpful discussions during the workshop. We also thank V. Colin, S. Sandon, F. Zapolsky, P. Albers and W. Merry for communicating early versions of [3, 9, 39], respectively with us. We thank M. Usher for useful discussions. Finally we thank an anonymous referee for extremely helpful comments and corrections. L.P. and D.R. were partially supported by the Israel Science Foundation Grants 509/07 and 178/13, by the National Science Foundation grant DMS-1006610 and by the European Research Council advanced grant 338809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia Fraser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, M., Polterovich, L. & Rosen, D. On Sandon-type metrics for contactomorphism groups. Ann. Math. Québec 42, 191–214 (2018). https://doi.org/10.1007/s40316-017-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-017-0092-z

Keywords

Mathematics Subject Classification

Navigation