Skip to main content
Log in

Abstract

Let \(\mathcal {A}_{0}\) denote the class of analytic functions f in the unit disk \({\mathbb {D}} = \{ z \in {\mathbb {C}} : |z| < 1\}\) normalized by \(f(0)=1\). For \(f(z) = \sum \nolimits _{k=0}^{\infty } a_{k} z^{k}\), the nth partial sum \(s_{n} (f,z)\) of f is defined by \(s_{n} (f,z) = \sum \nolimits _{k=0}^{n} a_{k} z^{k}\), \(n=0,1,\ldots \). A function \(f \in \mathcal {A}_{0}\) is said to be stable with respect to \(g \in \mathcal {A}_{0}\) if

$$\begin{aligned} \frac{s_{n} (f,z)}{f(z)} \prec \frac{1}{g(z)}, \quad z \in {\mathbb {D}} \end{aligned}$$

holds for all \(n \in {\mathbb {N}}\). In the present paper, we consider the following function

$$\begin{aligned} v_{\lambda } (\alpha , z) := \left( \frac{1+(1-2\alpha ) z}{1-z}\right) ^{\lambda }, \end{aligned}$$

for \(0\le \alpha < 1\) and \(0\le \lambda \le 1\). The aim of this paper is to prove that \(v_{\lambda }(\alpha ,z)\) is stable with respect to \(f_{\lambda } (z):= 1/(1-z)^{\lambda }\) for \(0<\lambda \le 1\) and \(1/2 \le \alpha < 1\). Also, we prove that \(v_{\lambda }(\alpha ,z)\) is not stable with respect to itself when \(1/2< \alpha <1\) and \(0 <\lambda \le 1\). Finally, we end this paper with two conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duren, P.L.: Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, Berlin, Heidelberg, Tokyo). Springer, New York (1983)

    Google Scholar 

  2. Ruscheweyh, S., Salinas, L.: On starlike functions of order \(\lambda \in \left[\frac{1}{2},1\right)\). Ann. Univ. Mariae Curie Skłodowska Sect. A 54, 117–123 (2000)

    MathSciNet  Google Scholar 

  3. Ruscheweyh, St: On the Kakeya-Eneström theorem and Gegenbauer polynomial sums. SIAM J. Math. Anal 9, 682–686 (1978)

    Article  MathSciNet  Google Scholar 

  4. Ruscheweyh, St, Salinas, L.: Stable functions and Vietoris’ theorem. J. Math. Anal. Appl. 291(2), 596–604 (2004)

    Article  MathSciNet  Google Scholar 

  5. Vietoris, L.: Über das Vorzeichen gewisser trigonometrischer Summen. Sitzungsber. Österr. Akad. Wiss. 167, 125–135 (1958)

    Article  Google Scholar 

  6. Mondal, Saiful R., Swaminathan, A.: Stable functions and extension of Vietoris’ theorem. Results Math. 62, 33–51 (2012)

    Article  MathSciNet  Google Scholar 

  7. Wolfram Research. Inc. Mathematica. Version 10.0

Download references

Acknowledgements

The second author thanks Prof. S. Ponnusamy for bringing the paper [4] to his attention. The second author thanks SERB and NBHM for their financial support. The authors thank Prof. K. J. Wirths and Prof. D. K. Thomas for reading this manuscript and giving valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allu Vasudevarao.

Additional information

Communicated by Matti Vuorinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Vasudevarao, A. On Stable Functions. Comput. Methods Funct. Theory 18, 677–688 (2018). https://doi.org/10.1007/s40315-018-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-018-0249-z

Keywords

Mathematics Subject Classification

Navigation