Skip to main content
Log in

Faber Polynomials and Spectrum Localisation

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(K\) be a compact connected subset of the complex plane, of non-void interior, and whose complement in the extended complex plane is connected. Denote by \(F_n\) the \(n\)th Faber polynomial associated with \(K\). The aim of this paper is to find suitable Banach spaces of complex sequences, \(\mathcal{R },\) such that statements of the following type hold true: if \(T\) is a bounded linear operator acting on the Banach space \(\mathcal{X }\) such that \(( \langle F_n(T)x,x^*\rangle )_{n\ge 0} \in \mathcal{R }\) for each pair \((x,x^{*}) \in \mathcal{X }\times \mathcal{X }^{*}\), then the spectrum of \(T\) is included in the interior of \(K\). Generalisations of some results due to W. Mlak, N. Nikolski and J. van Neerven are, thus, obtained and several illustrative examples are given. An interesting feature of these generalisations is the influence of the geometry of \(K\) and the regularity of its boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atzmon, A., Eremenko, A., Sodin, M.: Spectral inclusion and analytic continuation. Bull. Lond. Math. Soc. 31(6), 722–728 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badea, C., Grivaux, S.: Faber-hypercyclic operators. Israel J. Math. 165, 43–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badea, C., Grivaux, S.: Size of the peripheral point spectrum under power or resolvent growth conditions. J. Funct. Anal. 246(2), 302–329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckermann, B.: Image numérique, GMRES et polynômes de Faber. C. R. Math. Acad. Sci. Paris 340(11), 855–860 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conway, J.: A Course in Functional Analysis. Second edn. Graduate Texts in Mathematics, 96. Springer, New York (1990). ISBN: 0-387-97245-5

    Google Scholar 

  6. Duren, P.: Theory of \(H^p\) Spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York-London (1970)

    Google Scholar 

  7. Eiermann, M., Varga, R.: Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains. Electron. Trans. Numer. Anal. 1, 49–71 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Gaier, D.: Lectures on Complex Approximation. Translated from the German by Renate McLaughlin. Birkhäuser Boston, Inc., Boston (1987). ISBN: 0-8176-3147-X

    Book  Google Scholar 

  9. He, M.X., Saff, E.B.: The zeros of Faber polynomials for an \(m\)-cusped hypocycloid. J. Approx. Theory 78(3), 410–432 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kövari, T.: Pommerenke, On Faber polynomials and Faber expansions. Math. Z. 99, 193–206 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mlak, W.: On a theorem of Lebow. Ann. Polon. Math. 35(1), 107–109 (1977/1978)

    MathSciNet  Google Scholar 

  12. Nevanlinna, O.: Convergence of Iterations for Linear Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993). ISBN: 3-7643-2865-7

    Book  Google Scholar 

  13. Nikolski, N.: A Tauberian theorem for the spectral radius. Sibirsk. Mat. Zh. 18(6), 1367–1372 (1977); English transl., Siberian Math. J. 18(6), 969–972 (1978)

    Google Scholar 

  14. Nikolski, N.: Estimates of the spectral radius and the semigroup growth bound in terms of the resolvent and weak asymptotics. Algebra i Analiz 14(4), 141–157 (2002); translation in. St. Petersburg Math. J. 14(4), 641–653 (2003)

  15. Pritsker, I.E.: On the local asymptotics of Faber polynomials. Proc. Am. Math. Soc. 127(10), 2953–2960 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Suetin, P.K.: Series of Faber Polynomials. Translated from the 1984 Russian original by E.V. Pankratiev [E.V. Pankrat’ev]. Analytical Methods and Special Functions, 1. Gordon and Breach Science Publishers, Amsterdam (1998). ISBN: 90-5699-058-6

  17. Toh, K.-C., Trefethen, L.: The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl. 21(1), 145–165 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Neerven, J.M.A.M.: Exponential stability of operators and operator semigroups. J. Funct. Anal. 130(2), 293–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weiss, G.: Weakly \(l^p\)-stable linear operators are power stable. Int. J. Syst. Sci. 20(11), 2323–2328 (1989)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

I would like to express my sincere gratitude to my advisor Catalin Badea for proposing the topic of this paper and for his guidance and support. I would also like to thank the two referees for their constructive remarks, critical reading and suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Devys.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devys, O. Faber Polynomials and Spectrum Localisation. Comput. Methods Funct. Theory 13, 107–131 (2013). https://doi.org/10.1007/s40315-013-0010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-013-0010-6

Keywords

Mathematics Subject Classification

Navigation