Skip to main content
Log in

Faber-hypercyclic operators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let Ω be a bounded domain of the complex plane whose boundary is a closed Jordan curve and (F n ) n≥0 the sequence of Faber polynomials of Ω. We say that a bounded linear operator T on a separable Banach space X is Ω-hypercyclic if there exists a vector x of X such that {F n (T)x: n ≥ 0} is dense in X. We show that many of the results in the spectral theory of hypercyclic operators involving the unit disk or its boundary have Ω-hypercyclic counterparts which involve the domain Ω or its boundary. The influence of the geometry of Ω or the smoothness of its boundary on Faber-hypercyclicity is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Atzmon, A. Eremenko, and M. Sodin, Spectral inclusion and analytic continuation, Bulletin of the London Mathematical Society 31 (1999), 722–728.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Badea, and S. Grivaux, Size of the peripheral point spectrum under power or resolvent growth conditions, Journal of functional Analysis 246 (2007), 302–329.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Bayart, Porosity and hypercyclic operators, Proceedings of the American Mathematical Society 133 (2005), 3309–3316.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bayart and S. Grivaux, Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proceedings of the London Mathematical Society 94 (2007), 181–210.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bonilla and K-G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro, Integral Equations and Operator Theory 56 (2006), 151–162.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bonilla and K-G. Grosse-Erdmann, Frequently hypercyclic operators, Ergodic Theory and Dynamical Systems 27 (2007), 383–404.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Bourdon, Invariant manifolds of hypercyclic vectors, Proceedings of the American Mathematical Society 118 (1993), 845–847.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Feldman, Perturbations of hypercyclic vectors, Journal of Mathematical Analysis and Applications 273 (2002), 67–74.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Flytzanis, Unimodular eigenvalues and linear chaos in Hilbert spaces, Geometric and Functional Analysis 5 (1995), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Gaier, The Faber operator and its boundedness, Journal of Approximation Theory 101 (1999), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, Journal of Functional Analysis 98 (1991), 229–269.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Grivaux, Sums of hypercyclic operators, Journal of Functional Analysis 202 (2003), 486–503.

    Article  MathSciNet  MATH  Google Scholar 

  15. K-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bulletin of the American Mathematical Society 36 (1999), 345–381.

    Article  MathSciNet  MATH  Google Scholar 

  16. K-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM Revista de la Real Academia Ciencias Exactas, Fisicas y Naturales, Serie A Matemáticas 97 (2003), 273–286.

    MathSciNet  MATH  Google Scholar 

  17. D. A. Herrero, Limits of hypercyclic and supercyclic operators, Journal of Functional Analysis 99 (1991), 179–190.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Kitai, Invariant Closed Sets for Linear Operators, PhD. Thesis, University of Toronto, 1982.

  19. T. Kövari and C. Pommerenke, On Faber polynomials and Faber expansions, Mathematische Zeitschrift 99 (1967), 193–206.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Lesley, V. Vinge and S. Warschawski, Approximation by Faber polynomials for a class of Jordan domains, Mathematische Zeitschrift 138 (1974), 225–237.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Markushevich, Theory of Functions of a Complex Variable, Vol. I, II, III, Chelsea Publishing Co., New York, 1977.

    MATH  Google Scholar 

  22. C. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  23. I. Pritsker, Derivatives of Faber polynomials and Markov inequalities, Journal of Approximation Theory 118 (2002), 163–174.

    Article  MathSciNet  Google Scholar 

  24. T. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, second edition. Pure and Applied Mathematics, John Wiley and Sons, New York, 1990.

    MATH  Google Scholar 

  25. P. Suetin, Series of Faber Polynomials, Analytical Methods and Special Functions, Gordon and Breach Science Publishers, Amsterdam, 1998.

    Google Scholar 

  26. V. Smirnov and N. Lebedev, Functions of a Complex Variable: Constructive Theory, MIT Press, Cambridge, 1968.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Badea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badea, C., Grivaux, S. Faber-hypercyclic operators. Isr. J. Math. 165, 43–65 (2008). https://doi.org/10.1007/s11856-008-1003-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-008-1003-4

Keywords

Navigation