Skip to main content
Log in

Asymptotics of Carleman Polynomials for Level Curves of the Inverse of a Shifted Zhukovsky Transformation

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

This paper complements the recent investigation of [4] on the asymptotic behavior of polynomials orthogonal over the interior of an analytic Jordan curve \(L\). We study the specific case of \(L=\{z= w-1 +(w-1)^{-1},\ |w|=R\}\), for some \(R>2\), providing an example that exhibits the new features discovered in [4], and for which the asymptotic behavior of the orthogonal polynomials is established over the entire domain of orthogonality. Surprisingly, this variation of the classical example of the ellipse turns out to be quite sophisticated. After properly normalizing the corresponding orthonormal polynomials \(p_n, n=0,1,\ldots \), and on a critical subregion of the orthogonality domain, a subsequence \(\{p_{n_k}\}\) converges if and only if \(\log _{\mu ^4}(n_k)\) converges modulo 1 (\(\mu \) being an important quantity associated to \(L\)). As a consequence, the limiting points of the sequence \(\{p_n\}\) form a one parameter family of functions, the range of the parameter being the interval \([0,1)\). The polynomials \(p_n\) are much influenced by a certain integrand function, the explained behavior being the result of this integrand having a nonisolated singularity that is a cluster point of poles. The nature of this singularity arises purely from geometric considerations, as opposed to the more common situation where the critical singularities come from the orthogonality weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If \(z\in \Sigma _p, p\ge 2\), the first singularities are also finitely many poles, but they have a total multiplicity larger than \(1\), and although this certainly leads to a better estimate than (5), that estimate is essentially pointwise, unless more is known about the particularities of the orthogonality domain.

References

  1. Baratchart, L., Saff, E.B., Stylianoploulos, N.S.: On finite-term recurrence relations for Bergman and Szegő polynomials. Comput. Methods Funct. Theory 12, 393–402 (2012)

    Article  MATH  Google Scholar 

  2. Carleman, T.: Über die approximation analytischer funktionen durch lineare aggregate von vorgegebenen potenzen. Archiv. för Math. Atron. och Fysik 17, 1–30 (1922)

    Google Scholar 

  3. Dragnev, P., Miña-Díaz, E.: On a series representation for Carleman orthogonal polynomials. Proc. Am. Math. Soc. 138, 4271–4279 (2010)

    Article  MATH  Google Scholar 

  4. Dragnev, P., Miña-Díaz, E.: Asymptotic behavior and zero distribution of Carleman orthogonal polynomials. J. Approx. Theory 162, 1982–2003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dragnev, P., Miña-Díaz, E., Michael Northington, V.: Asymptotics of Carleman polynomials for level curves of the inverse of a shifted Zhukovsky, transformation. arXiv:1212.1816

  6. Gaier, D.: Lectures on Complex Approximation. Birkhäuser, Boston (1987). Translated from German by Renate McLaughlin

  7. Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math. 222, 1405–1460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levin, A.L., Saff, E.B., Stylianopoulos, N.S.: Zero distribution of Bergman orthogonal polynomials for certain planar domains. Constr. Approx. 19, 411–435 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maymeskul, V., Saff, E.B.: Zeros of polynomials orthogonal over regular $N$-gons. J. Approx. Theory 122, 129–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lubinsky, D.S.: Universality type limits for Bergman orthogonal polynomials. Comput. Methods Funct. Theory 10, 135–154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miña-Díaz, E.: An asymptotic integral representation for Carleman orthogonal polynomials. Int. Math. Res. Notices (2008). article ID rnn065

  12. Miña-Díaz, E.: Asymptotics of polynomials orthogonal over the unit disk with respect to a polynomial weight without zeros on the unit circle. J. Approx. Theory 165, 41–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miña-Díaz, E., Saff, E.B., Stylianopoulos, N.S.: Zero distributions for polynomials orthogonal with weights over certain planar regions. Comput. Methods Funct. Theory 5, 185–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saff, E.B.: Remarks on relative asymptotics of general orthogonal polynomials. In: Contemp. Math. vol. 507, pp. 233–239. Am. Math. Soc., Providence (2010)

  15. Sinclair, C.D., Yattselev, M.: Universality for ensembles of matrices with potential theoretic weights on domains with smooth boundary. J. Approx. Theory 164, 682–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simanek, B.: A new approach to ratio asymptotics for orthogonal polynomials. J. Spectral Theory 2, 373–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simanek, B.: Asymptotic properties of extremal polynomials corresponding to measures supported on analytic regions. J. Approx. Theory, http://dx.doi.org/10.1016/j.jat.2012.10.006 (2012)

  18. Suetin, P.K.: Polynomials orthogonal over a region and Bieberbach polynomials. In: Proc. Steklov Inst. Math., vol. 100. Amer. Math. Soc., Providence (1974). Translations

  19. Putinar, M., Stylianopoulos, N.S.: Finite-term relations for planar orthogonal polynomials. Comp. Anal. Oper. Theory 1, 447–456 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khavinson, D., Stylianopoulos, N.S.: Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. In: Around the Research of Vladimir Maz’ya II. In: Partial Differential Equations, pp. 219–228. Springer, Berlin (2009)

  21. Totik, V.: Christoffel functions on curves and domains. Trans. Am. Math. Soc. 362, 2053–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Miña-Díaz.

Additional information

Communicated by Edward B. Saff.

M. Northington V conducted his research while at the University of Mississippi as a GAANN fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragnev, P., Miña-Díaz, E. & Northington V, M. Asymptotics of Carleman Polynomials for Level Curves of the Inverse of a Shifted Zhukovsky Transformation. Comput. Methods Funct. Theory 13, 75–89 (2013). https://doi.org/10.1007/s40315-013-0008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-013-0008-0

Keywords

Mathematics Subject Classification (2000)

Navigation