Skip to main content
Log in

An adaptive finite element PML method for Helmholtz equations in periodic heterogeneous media

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The paper concerns the numerical solution for the wave propagation problem in periodic heterogeneous media. The homogenization method is utilized for the solution in the bounded periodic structure with highly oscillating coefficients. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain, and the exponential convergence of Cartesian PML is generalized to the Helmholtz transmission problem in periodic heterogeneous media. An efficient adaptive finite element algorithm based on reliable a posteriori error estimate is extended to solve the homogenized PML problem, and the reliability of the estimator is established. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ainsworth M (2004) Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J Numer Anal 42:553–575

    Article  MathSciNet  Google Scholar 

  • Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23:1482–1518

    Article  MathSciNet  Google Scholar 

  • Babuška I, Aziz A (1973) Survey lectures on mathematical foundations of the finite element method. In: Aziz A (ed) The mathematical foundations of the finite element method with application to the partial differential equations. Academic Press, New York, pp 5–359

  • Bao G, Wu H (2005) On the convergence of the solutions of PML equations for Maxwell’s equations. SIAM J Numer Anal 43:2121–2143

    Article  MathSciNet  Google Scholar 

  • Bao G, Li P, Wu H (2010) An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math Comput 79:1–34

    Article  Google Scholar 

  • Barucq H, Chaumont-Frelet T, Gout C (2017) Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math Comput 86:2129–2157

    Article  MathSciNet  Google Scholar 

  • Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis of periodic structures. North-Holland, Amsterdam

    Google Scholar 

  • Bérenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MathSciNet  Google Scholar 

  • Bespalov A, Haberl A, Praetorius D (2017) Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems. Comput Methods Appl Mech Eng 317:318–340

    Article  MathSciNet  Google Scholar 

  • Bonito A, Nochetto RH (2010) Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J Numer Anal 48:734–771

    Article  MathSciNet  Google Scholar 

  • Bramble JH, Pasciak JE (2007) Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math Comput 76:597–614

    Article  MathSciNet  Google Scholar 

  • Bramble JH, Pasciak JE, Trenev D (2010) Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math Comput 79:2079–2101

    Article  MathSciNet  Google Scholar 

  • Cakoni F, Guzina BB, Moskow S (2016) On the homogenization of a scalar scattering problem for highly oscillating anisotropic media. SIAM J Math Anal 48:2532–2560

    Article  MathSciNet  Google Scholar 

  • Cao L, Cui J (2004) Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains. Numer Math 96:525–581

    Article  MathSciNet  Google Scholar 

  • Cao L, Cui J, Zhu D (2002) Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general convex domains. SIAM J Numer Anal 40:543–577

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T (2016) On high order methods for the heterogeneous Helmholtz equation. Comput Math Appl 72:2203–2225

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Nicaise S (2020) Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J Numer Anal 40:1503–1543

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Spence EA (2023) Scattering by finely layered obstacles: Frequency-explicit bounds and homogenization. SIAM J Math Anal 55:1319–1363

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Valentin F (2020) A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains. SIAM J Numer Anal 58:1029–1067

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Vega P (2022) Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell’s equations. SIAM J Numer Anal 0:1774–1798

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Ern A, Vohralík M (2021) On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. Numer Math 148:525–573

    Article  MathSciNet  Google Scholar 

  • Chaumont-Frelet T, Gallistl D, Nicaise S, Tomezyk J (2022) Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers. Commun Math Sci 20:1–52

    Article  MathSciNet  Google Scholar 

  • Chen J, Chen Z (2008) An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math Comp 77:673–698

    Article  MathSciNet  Google Scholar 

  • Chen J, Cui J (2002) A multiscale rectangular element method for elliptic problems with entirely small periodic coefficients. Appl Math Comput 130:39–52

    MathSciNet  Google Scholar 

  • Chen Z, Liu X (2005) An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J Numer Anal 43:645–671

    Article  MathSciNet  Google Scholar 

  • Chen Z, Wu H (2003) An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J Numer Anal 41:799–826

    Article  MathSciNet  Google Scholar 

  • Chen Z, Wu X (2008) An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer Math Theor Methods Appl 1:113–137

    MathSciNet  Google Scholar 

  • Chen Z, Zheng W (2010) Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layer media. SIAM J Numer Anal 48:2158–2185

    Article  MathSciNet  Google Scholar 

  • Chew WC (1995) Waves and fields in inhomogeneous media. IEEE Press, New York

    Google Scholar 

  • Chew W, Weedon W (1994) A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt Technol Lett 13:599–604

    Article  Google Scholar 

  • Colton D, Kress R (1983) Integral equation methods in scattering theory. Wiley, New York

    Google Scholar 

  • Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 33:1106–1124

    Article  MathSciNet  Google Scholar 

  • Dörfler W, Sauter S (2013) A posteriori error estimation for highly indefinite Helmholtz problems. Comput Methods Appl Math 13:333–347

    Article  MathSciNet  Google Scholar 

  • Galkowski J, Lafontaine D, Spence EA (2023) Perfectly-matched-layer truncation is exponentially accurate at high frequency. SIAM J Math Anal 55:3344–3394

    Article  MathSciNet  Google Scholar 

  • Jiang X, Li P, Lv J, Zheng W (2017) An adaptive finite element PML method for the elastic wave scattering problem in periodic structure. ESAIM: M2AN 51:2017–2047

    Article  MathSciNet  Google Scholar 

  • Jiang X, Qi Y, Yuan J (2019) An adaptive finite element PML method for the acoustic scattering problems in layered media. Commun Comput Phys 25:266–288

    Article  MathSciNet  Google Scholar 

  • Kassali Z (2023) Analysis of a multiscale finite element method applied to the design of photovoltaic cells: a multiscale hybrid-mixed method for the Helmholtz equation with quasi-periodic boundary conditions. Ph.D. thesis, Université Côte d’Azur

  • Lafontaine D, Spence EA, Wunsch J (2022) For most frequencies, strong tapping has a weak effect in frequency-domain scattering. In: LXXIV, communications on pure and applied mathematics, pp 2025–2063

  • Ma C, Alber C, Scheichl R (2021) Wavenumber explicit convergence of a multiscale gfem for heterogeneous Helmholtz problems. arXiv preprint arXiv:2112.10544

  • Melenk JM, Sauter S (2010) Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math Comput 79:1871–1914

    Article  MathSciNet  Google Scholar 

  • Michler C, Demkowicz L, Kurtz J, Pardo D (2007) Improving the performance of perfectly matched layers by means of hp-adaptivity. Numer Methods Partial Differ Equ 23:832–858

    Article  MathSciNet  Google Scholar 

  • Moiola A, Spence EA (2019) Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions. Math Methods Appl Sci 29:317–354

    Article  MathSciNet  Google Scholar 

  • Monk P (2003) Finite elements methods for Maxwell equations. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ohlberger Mario, Verfurth Barbara (2018) A new heterogeneous multiscale method for the Helmholtz equation with high contrast. Multiscale Model Simul 16:385–411

    Article  MathSciNet  Google Scholar 

  • Peterseim D (2016) Eliminating the pollution eect in Helmholtz problems by local subscale correction. Math Comput 86:1005–1036

    Article  Google Scholar 

  • Peterseim D, Verfürth B (2020) Computational high frequency scattering from high-contrast heterogeneous media. Math Comput 89:2649–2674

    Article  MathSciNet  Google Scholar 

  • Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54:483–493

    Article  MathSciNet  Google Scholar 

  • Staude I, Pertsch T, Kivshar YS (2019) All-dielectric resonant meta-optics lightens up. ACS Photon 6:802–814

    Article  Google Scholar 

  • Teixeira FL, Chew WC (2001) Advances in the theory of perfectly matched layers. In: Chew WC et al (eds) Fast and efficient algorithms in computational electromagnetics. Artech House, Boston, pp 283–346

    Google Scholar 

  • Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave-like equations. Appl Numer Math 27:533–557

    Article  MathSciNet  Google Scholar 

  • Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F (2011) A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7:52–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Jiang.

Ethics declarations

Conflict of interest

The named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of XJ was supported in part by China NSF Grant 12171017. The research of QM was supported in part by China NSF Grant 11801387.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Sun, Z., Sun, L. et al. An adaptive finite element PML method for Helmholtz equations in periodic heterogeneous media. Comp. Appl. Math. 43, 242 (2024). https://doi.org/10.1007/s40314-024-02770-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02770-y

Keywords

Mathematics Subject Classification

Navigation