Skip to main content
Log in

Primal-dual active set method for evaluating American put options on zero-coupon bonds

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

An efficient numerical method is propoesd for a parabolic linear complementarity problem (LCP) arising in the valuation of American options on zero-coupon bonds under the Cox–Ingersoll–Ross (CIR) model. With variable substitutions, we first transform the original pricing problem into a degenerated linear complementarity problem on a bounded domain, and present a corresponding variational inequality (VI). We then give the full discretization scheme of VI constructed by finite element and finite difference methods in spatial and temporal directions, respectively. Within the framework of VI, the stability and the rate of convergence are obtained. Moreover, for the resulted discretised variational inequality, we present a primal-dual active set (PDAS) method to solve it. Numerical results are carried out to test the usefulness of the proposed method compared with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

References

Download references

Acknowledgements

The work of Q. Zhang was supported by the education department project of Liaoning Province under the grant No.LJKMZ20220484. The work of H. Song was supported by the National Natural Science Foundation of China under the grant No.11701210, the education department project of Jilin Province under the grant No.JJKH20211031KJ, the Natural Science Foundation of Jilin Province under the grants No. 20190103029JH, 20200201269JC, and the fundamental research funds for the Central Universities. The work of Y. Hao was supported by the National Natural Science Foundation of China under the grant No. 11901606. The authors also wish to thank the High Performance Computing Center of Jilin University, Computing Center of Jilin Province, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education for essential computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Song.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The proof of Theorem 4

The proof of Theorem 4

In this part, we will give the proof of Theorem 4 in detail. At first, let \(\eta ^{m}=u^{m}-I_h u^{m}\), we can easily obtain that

$$\begin{aligned} \begin{aligned}&\big (\omega _1\partial e^{m+1},e^{m+1}\big )+a\big (e^{m+1},e^{m+1}\big )\\&=\big (\omega _1\partial e^{m+1},\eta ^{m+1}\big )+a\big (e^{m+1},\eta ^{m+1}\big )\\&\quad +\big (\omega _1\partial u^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\big )+a\big (u^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\big )\\&\quad -\big (\omega _1\partial u_{h,\tau }^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\big )-a\big (u_{h,\tau }^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\big ). \end{aligned} \end{aligned}$$
(A.1)

Taking \(v=u_{h,\tau }^{m+1}\) in (8) and \(v_h=I_h u^{m+1}\) in (11) for \(\tau =\tau _{m+1}\)

$$\begin{aligned} \Bigg (\omega _1 \frac{\partial u^{m+1}}{\partial \tau },u_{h,\tau }^{m+1}-u^{m+1}\Bigg )+a\Bigg (u^{m+1},u_{h,\tau }^{m+1}-u^{m+1}\Bigg )\ge & {} 0,\\ \Bigg (\omega _1\partial u_{h,\tau }^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\Bigg )+a\Bigg (u_{h,\tau }^{m+1},I_h u^{m+1}-u_{h,\tau }^{m+1}\Bigg )\ge & {} 0. \end{aligned}$$

Adding the so-obtained inequalities to (A.1), we find by easy calculation that

$$\begin{aligned} \begin{aligned}&\Bigg (\omega _1\partial e^{m+1},e^{m+1}\Bigg )+a\Bigg (e^{m+1},e^{m+1}\Bigg )\\ \le&\Bigg (\omega _1\partial e^{m+1},\eta ^{m+1}\Bigg )+a\Bigg (e^{m+1},\eta ^{m+1}\Bigg )-\Bigg (\omega _1\partial u^{m+1},\eta ^{m+1}\Bigg )\\&-a\Bigg (u^{m+1},\eta ^{m+1}\Bigg )-\Bigg (\omega _1\Bigg (\frac{\partial u^{m+1}}{\partial \tau }-\partial u^{m+1}\Bigg ),e^{m+1}\Bigg )\\ \le&\sum _{j=1}^4p_m^j, \end{aligned} \end{aligned}$$
(A.2)

where

$$\begin{aligned}{} & {} p_m^1=\big (\omega _1\partial e^{m+1},\eta ^{m+1}\big ),~~p_m^2=a\big (e^{m+1},\eta ^{m+1}\big ),\\{} & {} p_m^3=-\big (\omega _1\partial u^{m+1},\eta ^{m+1}\big )-a\big (u^{m+1},\eta ^{m+1}\big ),~~p_m^4=-\Bigg (\omega _1\Bigg (\frac{\partial u^{m+1}}{\partial \tau }-\partial u^{m+1}\Bigg ),e^{m+1}\Bigg ). \end{aligned}$$

Multiplication by \(\Delta \tau \) and summation then gives:

$$\begin{aligned} \sum _{m=0}^{M-1}\Bigg (\omega _1 (e^{m+1}-e^m),e^{m+1}\Bigg )+\sum _{m=0}^{M-1}a(e^{m+1},e^{m+1})\Delta \tau \le \sum _{j=1}^4 E_j, \end{aligned}$$
(A.3)

where

$$\begin{aligned} E_j=\sum _{m=0}^{M-1}|p_m^j|\Delta \tau . \end{aligned}$$

The first term of (A.3) can be simplified that:

$$\begin{aligned} \begin{aligned}&\sum _{m=0}^{M-1}\Bigg (\omega _1 \big (e^{m+1}-e^m\big ),e^{m+1}\Bigg )=\sum _{m=0}^{M-1}\big (\omega _1 e^{m+1},e^{m+1}\big )-\sum _{m=0}^{M-1}\big (\omega _1 e^{m},e^{m+1}\big )\\ =&\sum _{m=0}^{M-1}\Vert e^{m+1}\Vert ^2_{0,\omega _1}-\sum _{m=0}^{M-1}\big (\omega _1e^m,e^{m+1}\big )\\ \ge&\sum _{m=0}^{M-1}\Vert e^{m+1}\Vert _{0,\omega _1}^2-\sum _{m=0}^{M-1}\frac{\Vert e^{m+1}\Vert _{0,\omega _1}^2+\Vert e^m\Vert _{0,\omega _1}^2}{2}=\frac{\Vert e^M\Vert _{0,\omega _1}^2-\Vert e^0\Vert _{0,\omega _1}^2}{2}, \end{aligned} \end{aligned}$$

which implies that

$$\begin{aligned} 2\sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau \le 2\sum _{j=1}^4 E_j-\Vert e^M\Vert _{0,\omega _1}^2+\Vert e^0\Vert _{0,\omega _1}^2. \end{aligned}$$
(A.4)

Now, we will give the estimation of \(E_j,~~j=1,\cdots ,4\), respectively. (1) The estimation of \(E_1\) Summation by parts gives

$$\begin{aligned} \sum _{m=0}^{M-1}\big (\omega _1\partial e^{m+1},\eta ^{m+1}\big )\Delta \tau =-\sum _{m=0}^{M-1}\big (\omega _1 e^{m+1},\partial \eta ^{m+1}\big )\Delta \tau +\big (\omega _1 e^M,\eta ^M\big )-\big (\omega _1 e^0,\eta ^0\big ). \end{aligned}$$

Now, by the following conclusions (Johnson 1976; Vuik 1990):

$$\begin{aligned}{} & {} \Bigg \Vert \frac{\partial \eta }{\partial \tau }\Bigg \Vert _{L^2(J;H^2(\Omega ))}\le Ch\Bigg \Vert \frac{\partial u}{\partial \tau }\Bigg \Vert _{L^2(J;H^1(\Omega ))},\\{} & {} \Vert \partial \eta ^m\Vert _0\le C(\Delta \tau )^{-\frac{1}{2}}h\Bigg \Vert \frac{\partial u}{\partial \tau }\Bigg \Vert _{L^2(J;H^1(\Omega ))},\\{} & {} \max _m\Vert \eta ^m\Vert _0\le Ch\Vert u\Vert _{L^\infty (J;H^1(\Omega ))}, \end{aligned}$$

we can easily obtain that

$$\begin{aligned}{} & {} \Vert \partial \eta ^m\Vert _{0,\omega _1}^2\le \Vert \omega _1\Vert _{L^\infty } \Vert \partial \eta ^m\Vert _0^2\le C(\Delta \tau )^{-1}h^2\Bigg \Vert \frac{\partial u}{\partial \tau }\Bigg \Vert ^2_{L^2(J;H^1(\Omega ))},\\{} & {} \max _m\Vert \eta ^m\Vert _{0,\omega _1}\le Ch\Vert u\Vert _{L^\infty (J;H^1(\Omega ))}. \end{aligned}$$

Moreover, by the equation (10), we obtain that

$$\begin{aligned} a(v,v)\ge C\Vert v\Vert _{1,\omega _2}^2\ge \tilde{C}\Vert v\Vert _{0,\omega _1}^2,~~\forall v\in H^1_0(\Omega ). \end{aligned}$$
(A.5)

where

$$\begin{aligned} \tilde{C}=\min \Bigg (\frac{\sigma ^2}{2},1\Bigg )\cdot {\frac{\nu }{1+\delta }} \end{aligned}$$

Therefore, using Cauchy’s inequality and the above inequations, we find that

$$\begin{aligned} E_1\le & {} \sum _{m=0}^{M-1}\big |(\omega _1e^{m+1},\partial \eta ^{m+1})\big |\Delta \tau +\big |(\omega _1 e^M,\eta ^M)\big |+\big |(\omega _1e^0,\eta ^0)\big |\\\le & {} \frac{1}{8}\sum _{m=0}^{M-1}\Vert e^m\Vert _{0,\omega _1}^2\Delta \tau +2\sum _{m=0}^{M-1}\Vert \partial \eta ^{m+1}\Vert _{0,\omega _1}^2\Delta \tau +\frac{1}{8}\Vert e^M\Vert _{0,\omega _1}^2\\{} & {} +\Vert e^0\Vert _{0,\omega _1}^2+2\Vert \eta ^M\Vert _{0,\omega _1}^2+\frac{1}{4}\Vert \eta ^0\Vert _{0,\omega _1}^2\\\le & {} \frac{1}{8}\sum _{m=0}^{M-1}\Vert e^m\Vert _{0,\omega _1}^2\Delta \tau +Ch^2\Bigg \Vert \frac{\partial u}{\partial \tau }\Bigg \Vert _{{L^2(J;H^1(\Omega ))}}^2+\frac{1}{8}\Vert e^M\Vert _{0,\omega _1}^2\\{} & {} +Ch^2\Vert u\Vert _{{L^\infty (J;H^1(\Omega ))}}^2+\Vert e^0\Vert _{0,\omega _1}^2\\\le & {} \frac{\tilde{C_1}}{8}\sum _{m=0}^{M-1}a({e^{m+1},e^{m+1}})\Delta \tau +\frac{1}{8}\Vert e^M\Vert _{0,\omega _1}^2+\Vert e^0\Vert _{0,\omega _1}^2\\{} & {} +Ch^2\Bigg \Vert \frac{\partial u}{\partial \tau }\Bigg \Vert _{L^2(J;H^1(\Omega ))}^2+Ch^2\Vert u\Vert _{L^\infty (J;H^1(\Omega ))}^2. \end{aligned}$$

(2) The estimation of \(E_2\)

$$\begin{aligned} E_2= & {} \sum _{m=0}^{M-1}\big |a(e^{m+1},\eta ^{m+1})\big |\Delta \tau \\\le & {} \left\{ \frac{1}{8}\sum _{m=0}^{M-1}\left[ \frac{\sigma ^2}{2}\big (\omega _2e_r^{m+1},e_r^{m+1}\big )]+2\sum _{m=0}^{M-1}[\frac{\sigma ^2}{2}\big (\omega _2\eta _r^{m+1},\eta _r^{m+1}\big )\right] \right. \\{} & {} \left. +\frac{1}{8}\sum _{m=0}^{M-1}\big (\omega _2e^{m+1},e^{m+1}\big )+2\sum _{m=0}^{M-1}\big (\omega _2\eta ^{m+1},\eta ^{m+1}\big )\right\} \Delta \tau \\\le & {} \frac{1}{8}\sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau +C\Vert \eta ^{m+1}\Vert _{1,\omega _2}^2\\\le & {} \frac{1}{8}\sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau +Ch^2\Vert u\Vert ^2_{L^\infty (J;H^2(\Omega )}. \end{aligned}$$

(3) The estimation of \(E_3\)

$$\begin{aligned} E_3= & {} \sum _{m=0}^{M-1}\big |-(\omega _1\partial u^{m+1},\eta ^{m+1})-a(u^{m+1},\eta ^{m+1})\big |\Delta \tau . \end{aligned}$$

Integration by parts for the second one:

$$\begin{aligned}{} & {} \sum _{m=0}^{M-1}\left\{ |(\omega _1\partial u^{m+1},\eta ^{m+1})|\Delta \tau +|a(u^{m+1},\eta ^{m+1})|\Delta \tau \right\} \\ \le{} & {} \sum _{m=0}^{M-1}\Big (\Vert \partial u^{m+1}\Vert _{0,\omega _1}\cdot \Vert \eta ^{m+1}\Vert _{0,\omega _1}+C_{1}\Vert u^{m+1}\Vert _{1,\omega _2}\cdot \Vert \eta ^{m+1}\Vert _{1,\omega _2}\Big )\Delta \tau \\ \le{} & {} \sum _{m=0}^{M-1}C\Big (\Vert \partial u^{m+1}\Vert _{0,\omega _1}+\Vert u^{m+1}\Vert _{1,\omega _2}\Big )\cdot \Vert \eta ^{m+1}\Vert _{1,\omega _2}\Delta \tau . \end{aligned}$$

Therefore, the estimation of \(E_3\) is as follows:

$$\begin{aligned} E_3\le{} & {} \sum _{m=0}^{M-1}C(\Vert \partial u^{m+1}\Vert _{0,\omega _1}+\Vert u^{m+1}\Vert _{1,\omega _2})\cdot \Vert \eta ^{m+1}\Vert _{1,\omega _2}\Delta \tau \\ \le{} & {} \sum _{m=0}^{M-1}Ch^2\left( \Vert \partial u^{m+1}\Vert _{L^\infty (J;L^\infty (\Omega ))}+\Vert u\Vert _{L^\infty (J;H^2(\Omega ))}\right) \cdot \Vert u\Vert _{L^\infty (J;H^2(\Omega ))}. \end{aligned}$$

(4) The estimation of \(E_4\)

$$\begin{aligned} E_4\le \sum _{m=0}^{M-1}\left| \left( \omega _1\left[ \partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right] ,e^{m+1}\right) \right| \Delta \tau . \end{aligned}$$

By means of equation (A.5) and Cauchy’s inequality, we obtain that:

$$\begin{aligned} \left( \omega _1\left[ \partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right] ,e^{m+1}\right)\le & {} \frac{1}{4}\big (\omega _1e^{m+1},e^{m+1}\big )\\ {}{} & {} \quad +\left( \omega _1\left[ \partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right] ,\partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right) \\\le & {} \frac{\tilde{C_1}}{4}a\big (e^{m+1},e^{m+1}\big )+\left\| \partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right\| _{0,\omega _1}^2. \end{aligned}$$

For the item

$$\begin{aligned} \left\| \partial u^{m+1}-\frac{\partial u^{m+1}}{\partial \tau }\right\| _{0,\omega _1}{} & {} =\left\| \frac{u^{m+1}-u^m}{\Delta \tau }-\frac{\partial u}{\partial \tau }(\tau _{m+1})\right\| _{0,\omega _1}\\{} & {} =\left\| \frac{1}{\Delta \tau }\int _{\tau _m}^{\tau _{m+1}}\left[ \frac{\partial u}{\partial \tau }(\tau )-\frac{\partial u}{\partial \tau }(\tau _{m+1})\right] d\tau \right\| _{0,\omega _1}\\{} & {} =\left\| \frac{1}{\Delta \tau }\int _{\tau _m}^{\tau _{m+1}}\left[ \int _{\tau _{m+1}}^\tau \frac{\partial ^2 u}{\partial \tau ^2}ds\right] d\tau \right\| _{0,\omega _1}\\{} & {} \le \frac{1}{\Delta \tau }\int _{\tau _m}^{\tau _{m+1}}\int _{\tau _m}^{\tau _{m+1}}\left\| \frac{\partial ^2 u}{\partial \tau ^2}\right\| _{0,\omega _1}dsd\tau , \end{aligned}$$

according to the literature (Vuik 1990), we similarly obtain that

$$\begin{aligned} \int _{\tau _m}^{\tau _{m+1}}\left\| \frac{\partial ^2 u}{\partial \tau ^2}\right\| _{0,\omega _1}ds\le {\sqrt{\Delta \tau }}\left\| \frac{\partial ^2 u}{\partial \tau ^2}\right\| _{0,\omega _1}. \end{aligned}$$

Therefore, the estimation of \(E_4\) is as follows:

$$\begin{aligned} E_4\le \frac{\tilde{C_1}}{4}\sum _{m=0}^{M-1}a(e^{m+1},e^{m+1})\Delta \tau +C(\Delta \tau )^2\left\| \frac{\partial ^2 u}{\partial \tau ^2}\right\| _{L^2(J;H^2(\Omega ))}^2. \end{aligned}$$

So far, we have obtained the estimates of \(E_j,~j=1,2,3,4\). Now, by calculating the right end of (A.4), we have

$$\begin{aligned}{} & {} \left( \frac{7-3\tilde{C_1}}{4}\right) \sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau \le 3\Vert \text {e}^0\Vert _{0,\omega _1}^2-\frac{3}{4}\Vert e^M\Vert _{0,\omega _1}^2+C(h^2+(\Delta \tau )^2)\\ \end{aligned}$$

It is easily obtained from the assumption that

$$\begin{aligned} \sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau \le{} & {} C\left\{ \Vert \text {e}^0\Vert _{0,\omega _1}^2+(h^2+(\Delta \tau )^2)\right\} \\ \end{aligned}$$

According to Poincare inequality, we have

$$\begin{aligned} \sum _{m=0}^{M-1}a\big (e^{m+1},e^{m+1}\big )\Delta \tau \ge \gamma \sum _{m=0}^{M-1}\Vert e^{m+1}\Vert _1^2\Delta \tau . \end{aligned}$$

Combining the above equations, we obtain

$$\begin{aligned} \sum _{m=0}^{M-1}\Vert e^{m+1}\Vert _1^2\Delta \tau \le{} & {} C\left\{ \Vert \text {e}^0\Vert _{0,\omega _1}^2+(h^2+(\Delta \tau )^2)\right\} . \end{aligned}$$

Finally, using the complex trapezoidal formula, so that

$$\begin{aligned} \Vert u-u_{h,\tau }\Vert _{L^2(J;H^1(\Omega ))}^2= & {} \sum _{m=0}^{M-1}\int _{\tau _m}^{\tau _{m+1}}\Vert u-u_{h,\tau }\Vert _{1}^2d\tau \\= & {} \sum _{m=0}^{M-1}\frac{\Delta \tau (\Vert \text {e}^{m+1}\Vert _1^2+\Vert \text {e}^{m}\Vert _1^2)}{2}+C(\Delta \tau )^2\\= & {} \sum _{m=0}^{M-1}\Delta \tau \Vert \text {e}^{m+1}\Vert _1^2+\frac{1}{2}\Delta \tau \Vert \text {e}^0\Vert _1^2-\frac{1}{2}\Delta \tau \Vert \text {e}^M\Vert _1^2+C(\Delta \tau )^2\\\le & {} C(h^2+(\Delta \tau )^2)+C\Vert \text {e}^0\Vert _0^2+\frac{1}{2}\Delta \tau \Vert \text {e}^0\Vert _1^2\\\le & {} C(h^2+(\Delta \tau )^2)+Ch^4|u^0|_2^2+\frac{1}{2}Ch^2\Delta \tau |u^0|_2^2\\\le & {} C(h+\Delta \tau )^2.\\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, Q., Song, H. et al. Primal-dual active set method for evaluating American put options on zero-coupon bonds. Comp. Appl. Math. 43, 213 (2024). https://doi.org/10.1007/s40314-024-02729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02729-z

Keywords

Mathematics Subject Classification

Navigation