Skip to main content
Log in

Ekeland’s variational principle for interval-valued functions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we attempt to propose Ekeland’s variational principle for interval-valued functions (IVFs). To develop the variational principle, we study a concept of sequence of intervals. In the sequel, the idea of gH-semicontinuity for IVFs is explored. A necessary and sufficient condition for an IVF to be gH-continuous in terms of gH-lower and upper semicontinuity is given. Moreover, we prove a characterization for gH-lower semicontinuity by the level sets of the IVF. With the help of this characterization result, we ensure the existence of a minimum for an extended gH-lower semicontinuous, level-bounded and proper IVF. To find an approximate minima of a gH-lower semicontinuous and gH-Gâteaux differentiable IVF, the proposed Ekeland’s variational principle is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Analytical models of some interesting real-world problems with neither differentiable nor continuous objective functions can be found in Clarke’s book Clarke (1990)

References

  • Ahmad I, Jayswal A, Al-Homidan S, Banerjee J (2019) Sufficiency and duality in interval-valued variational programming. Neural Comput Appl 31(8):4423–4433

    Article  Google Scholar 

  • Borwein JM, Mordukhovich BS, Shao Y (1999) On the equivalence of some basic principles in variational analysis. J Math Anal Appl 229(1):228–257

    Article  MathSciNet  MATH  Google Scholar 

  • Burke J, Deng S (2002) Weak sharp minima revisited part I: basic theory. Control Cybern 31:439–469

    MATH  Google Scholar 

  • Burke JV, Ferris MC (1993) Weak sharp minima in mathematical programming. SIAM J Control Optim 31(5):1340–1359

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Lodwick WA, Rufián-Lizana A (2013) Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim Decis Mak 12(3):305–322

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Rufián-Lizana A, Román-Flores H, Jiménez-Gamero MD (2013) Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst 219:49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SH, Wu J, Chen YD (2004) Interval optimization for uncertain structures. Finite Elem Anal Des 40(11):1379–1398

    Article  Google Scholar 

  • Clarke FH (1990) Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM

  • Clarke FH (1976) The maximum principle under minimal hypotheses. SIAM J Control Optim 14(6):1078–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland I (1974) On the variational principle. J Math Anal Appl 47(2):324–353

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland I (1979) Nonconvex minimization problems. Bull Am Math Soc 1(3):443–474

    Article  MathSciNet  MATH  Google Scholar 

  • Fabian M, Mordukhovich BS (1998) Nonsmooth characterizations of Asplund spaces and smooth variational principles. Set-Valued Var Anal 6(4):381–406

    Article  MathSciNet  MATH  Google Scholar 

  • Fabian M, Hájek P, Vanderwerff J (1996) On smooth variational principles in Banach spaces. J Math Anal Appl 197(1):153–172

    Article  MathSciNet  MATH  Google Scholar 

  • Facchinei F, Pang JS (2007) Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. 1. Springer Science & Business Media

  • Georgiev PG (1988) The strong Ekeland variational principle, the strong drop theorem and applications. J Math Anal Appl 131(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D (2017) Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J Appl Math Comput 53(1–2):709–731

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Ghosh D, Bhuiya SK, Patra LK (2018) A saddle point characterization of efficient solutions for interval optimization problems. J Appl Math Comput 58(1–2):193–217

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Singh A, Shukla KK, Manchanda K (2019) Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Inform Sci 504:276–292

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Debnath AK, Pedrycz W (2020) A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Int J Approx Reason 121:187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Chauhan RS, Mesiar R, Debnath AK (2020) Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Inform Sci 510:317–340

    Article  MathSciNet  MATH  Google Scholar 

  • Gong D, Sun J, Miao Z (2016) A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans Evol Comput 22(1):47–60

    Article  Google Scholar 

  • Henrion R, Outrata J (2001) A subdifferential condition for calmness of multifunctions. J Math Anal Appl 258(1):110–130

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48(2):219–225

    Article  MATH  Google Scholar 

  • Kruger AY (2003) On Fréchet subdifferentials. J Math Sci 116(3):3325–3358

    Article  MathSciNet  MATH  Google Scholar 

  • Kulisch UW, Miranker WL (1981) Computer arithmetic in theory and practice

  • Lupulescu V (2015) Fractional calculus for interval-valued functions. Fuzzy Sets Syst 265:63–85

    Article  MathSciNet  MATH  Google Scholar 

  • Markov S (2000) On the algebraic properties of convex bodies and some applications. J Convex Anal 7(1):129–166

    MathSciNet  MATH  Google Scholar 

  • Moore RE (1966) Interval Analysis, vol 4. Prentice-Hall Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Osuna-Gómez R, Hernández-Jiménez B, Chalco-Cano Y, Ruiz-Garzón G (2017) New efficiency conditions for multiobjective interval-valued programming problems. Inform Sci 420:235–248

    Article  MATH  Google Scholar 

  • Penot JP (1986) The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal 10(9):813–822

    Article  MathSciNet  MATH  Google Scholar 

  • Singh D, Dar BA, Kim D (2016) KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur J Oper Res 254(1):29–39

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal 71(3–4):1311–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Van Hoa N (2015) The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inform Sci 311:119–148

    Article  MathSciNet  MATH  Google Scholar 

  • Van Su T, Dinh DH (2020) Duality results for interval-valued pseudoconvex optimization problem with equilibrium constraints with applications. Comput Appl Math 39(2):1–24

    MathSciNet  MATH  Google Scholar 

  • Wolfe M (2000) Interval mathematics, algebraic equations and optimization. J Comput Appl Math 124(1–2):263–280

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2007) The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur J Oper Res 176(1):46–59

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2008) On interval-valued nonlinear programming problems. J Math Anal Appl 338(1):299–316

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2008) Wolfe duality for interval-valued optimization. J Optim Theory Appl 138(3):497–509

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Wang X, Lu J (2018) Multi-objective immune genetic algorithm solving nonlinear interval-valued programming. Eng Appl Artif Intell 67:235–245

    Article  Google Scholar 

Download references

Acknowledgements

The authors put a sincere thanks to the reviewers and editors for their valuable comments to enhance the paper. The first author is grateful to the Department of Science and Technology, India, for the award of ‘inspire fellowship’ (DST/INSPIRE Fellowship/2017/IF170248). Authors extend sincere thanks to Prof. José Luis Verdegay, Universidad de Granada, for his valuable comments to improve quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourav Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A proof of Lemma 2.1

Proof of (i)

Let \({\textbf {A}}=[\underline{a},\overline{a}]\) and \({\textbf {B}}=[\underline{b},\overline{b}].\) Then,

$$\begin{aligned} \Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}=\Vert [\underline{a},\overline{a}]\oplus [\underline{b},\overline{b}]\Vert _{I(\mathbb {R})}=\Vert [\underline{a}+\underline{b},\overline{a}+\overline{b}]\Vert _{I(\mathbb {R})}=\max \{|\underline{a}+\underline{b}|,|\overline{a}+\overline{b}|\}. \end{aligned}$$

We now have the following two possible cases.

  • Case 1. \(\Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}=|\underline{a}+\underline{b}|.\) Since \(|\underline{a}+\underline{b}|\le |\underline{a}|+|\underline{b}|\le \max \{|\underline{a}|,|\overline{a}|\}+\max \{|\underline{b}|,|\overline{b}|\}=\Vert {\textbf {A}}\Vert _{I(\mathbb {R})}+\Vert {\textbf {B}}\Vert _{I(\mathbb {R})},\) we get \(\Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}\le \Vert {\textbf {A}}\Vert _{I(\mathbb {R})}+\Vert {\textbf {B}}\Vert _{I(\mathbb {R})}.\)

  • Case 2. \(\Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}=|\overline{a}+\overline{b}|.\) Since \(|\overline{a}+\overline{b}|\le |\overline{a}|+|\overline{b}|\le \max \{|\underline{a}|,|\overline{a}|\}+\max \{|\underline{b}|,|\overline{b}|\}=\Vert {\textbf {A}}\Vert _{I(\mathbb {R})}+\Vert {\textbf {B}}\Vert _{I(\mathbb {R})},\) therefore, \(\Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}\le \Vert {\textbf {A}}\Vert _{I(\mathbb {R})}+\Vert {\textbf {B}}\Vert _{I(\mathbb {R})}.\)

Hence, \(\Vert {\textbf {A}}\oplus {\textbf {B}}\Vert _{I(\mathbb {R})}\le \Vert {\textbf {A}}\Vert _{I(\mathbb {R})}+\Vert {\textbf {B}}\Vert _{I(\mathbb {R})}~\text {for all}~{\textbf {A}},~{\textbf {B}}\in I(\mathbb {R}).\) \(\square \)

Proof of (ii)

Let \({\textbf {A}}=[\underline{a},\overline{a}],~{\textbf {B}}=[\underline{b},\overline{b}],~{\textbf {C}}=[\underline{c},\overline{c}]\) and \({\textbf {D}}=[\underline{d},\overline{d}]\). We note that

$$\begin{aligned} {\textbf {A}}\preceq {\textbf {C}}\implies [\underline{a},\overline{a}]\preceq [\underline{c},\overline{c}]\implies \underline{a}\le \underline{c}~\text {and}~ \overline{a}\le \overline{c}. \end{aligned}$$
(5)

Also,

$$\begin{aligned} {\textbf {B}}\preceq {\textbf {D}}\implies [\underline{b},\overline{b}]\preceq [\underline{d},\overline{d}]\implies \underline{b}\le \underline{d} ~\text {and}~\overline{b}\le \overline{d}. \end{aligned}$$
(6)

From (5) and (6), we have

$$\begin{aligned}{} & {} \underline{a}+\underline{b}\le \underline{c}+\underline{d} ~\text {and}~ \overline{a}+\overline{b}\le \overline{c}+\overline{d}\\{} & {} \quad \implies [\underline{a}+\underline{b},\overline{a}+\overline{b}]\preceq [\underline{c}+\underline{d},\overline{c}+\overline{d}]. \end{aligned}$$

Thus, \({\textbf {A}}\oplus {\textbf {B}}\preceq {\textbf {C}}\oplus {\textbf {D}}\). \(\square \)

Proof of Lemma 2.2

Proof of (i)

Let \({\textbf {A}}=[\underline{a},\overline{a}],~{\textbf {B}}=[\underline{b},\overline{b}]\) and \(\epsilon >0.\) \({\textbf {A}}\ominus _{gH}{} {\textbf {B}}=[\underline{a}-\underline{b},\overline{a}-\overline{b}]\) or \([\overline{a}-\overline{b}, \underline{a}-\underline{b}].\) Let us now consider the following four possible cases.

  • Case 1. \({\textbf {A}}\ominus _{gH}{} {\textbf {B}}=[\underline{a}-\underline{b},\overline{a}-\overline{b}]\) and \(\Vert {\textbf {A}}\ominus _{gH} {\textbf {B}}\Vert _{I(\mathbb {R})}=|\underline{a}-\underline{b}|.\) So, we have

    $$\begin{aligned} \underline{a}-\underline{b}\le \overline{a}-\overline{b}~\text {and}~|\overline{a}-\overline{b}|\le |\underline{a}-\underline{b}|. \end{aligned}$$
    (7)

    Let \(\Vert {\textbf {A}}\ominus _{gH} {\textbf {B}}\Vert _{I(\mathbb {R})}<\epsilon \). Then,

    $$\begin{aligned} |\underline{a}-\underline{b}|<\epsilon . \end{aligned}$$
    (8)

    By eq. (8), we have \(-\epsilon<\underline{a}-\underline{b}<\epsilon \), and hence \(\underline{b}-\epsilon <\underline{a}.\) By eqs. (7) and (8), we have \( |\overline{a}-\overline{b}|<\epsilon \). This implies \(\overline{b}-\epsilon <\overline{a}.\) Therefore, \({\textbf {B}}\ominus _{gH}[\epsilon ,\epsilon ]=[\underline{b}-\epsilon ,\overline{b}-\epsilon ]\prec [\underline{a},\overline{a}]={\textbf {A}}.\) Note that by eq. (8), \(\underline{a}<\underline{b}+\epsilon \). Also, by eqs. (7) and (8), we have \(|\overline{a}-\overline{b}|<\epsilon \). This implies \(\overline{a}<\overline{b}+\epsilon .\) Therefore, \({\textbf {A}}=[\underline{a},\overline{a}]\prec [\underline{b}+\epsilon ,\overline{b}+\epsilon ]={\textbf {B}}\oplus [\epsilon ,\epsilon ].\)

  • Case 2. \({\textbf {A}}\ominus _{gH}{} {\textbf {B}}=[\underline{a}-\underline{b},\overline{a}-\overline{b}]\) and \(\Vert {\textbf {A}}\ominus _{gH} {\textbf {B}}\Vert _{I(\mathbb {R})}=|\overline{a}-\overline{b}|.\) So, we have

    $$\begin{aligned} \underline{a}-\underline{b}\le \overline{a}-\overline{b}~\text {and}~|\underline{a}-\underline{b}|\le |\overline{a}-\overline{b}|. \end{aligned}$$
    (9)

    Consider

    $$\begin{aligned}{} & {} \Vert {\textbf {A}}\ominus _{gH} {\textbf {B}}\Vert _{I(\mathbb {R})}<\epsilon \nonumber \\{} & {} \quad \implies |\overline{a}-\overline{b}|<\epsilon \end{aligned}$$
    (10)

    By eq. (10), we have

    $$\begin{aligned} \overline{b}-\epsilon <\overline{a}. \end{aligned}$$

    By eqs. (9) and 10), we have \(|\underline{a}-\underline{b}|<\epsilon \). This implies \(\underline{b}-\epsilon <\underline{a}.\) Therefore, \({\textbf {B}}\ominus _{gH}[\epsilon ,\epsilon ]=[\underline{b}-\epsilon ,\overline{b}-\epsilon ]\prec [\underline{a},\overline{a}].\) Note that by eq. (10), \(\overline{a}<\overline{b}+\epsilon \). Also, by eqs. (9) and (10), we have \(|\underline{a}-\underline{b}|<\epsilon \). This implies \(\underline{a}<\underline{b}+\epsilon .\) Therefore, \({\textbf {A}}=[\underline{a},\overline{a}]\prec [\underline{b}+\epsilon ,\overline{b}+\epsilon ]={\textbf {B}}\oplus [\epsilon ,\epsilon ].\)

  • Case 3. \({\textbf {A}}\ominus _{gH}{} {\textbf {B}}=[\overline{a}-\overline{b},\underline{a}-\underline{b}]\) and \(\Vert {\textbf {A}}\ominus _{gH}{} {\textbf {B}}\Vert _{I(\mathbb {R})}=|\underline{a}-\underline{b}|.\) This case can be proved by following the steps similar to Case 1.

  • Case 4. \({\textbf {A}}\ominus _{gH}{} {\textbf {B}}=[\overline{a}-\overline{b},\underline{a}-\underline{b}]\) and \(\Vert {\textbf {A}}\ominus _{gH}{} {\textbf {B}}\Vert _{I(\mathbb {R})}=|\overline{a}-\overline{b}|.\) This case can be proved by following the steps similar to Case 2.

Conversely, let \({\textbf {B}}\ominus _{gH}[\epsilon ,\epsilon ]\prec {\textbf {A}}\prec {\textbf {B}}\oplus [\epsilon ,\epsilon ].\) Note that

$$\begin{aligned} {\textbf {B}}\ominus _{gH}[\epsilon ,\epsilon ]\prec {\textbf {A}}&\implies&[\underline{b}-\epsilon ,\overline{b}-\epsilon ]\prec [\underline{a},\overline{a}]\nonumber \\&\implies&\underline{b}-\epsilon<\underline{a}~\text {and}~\overline{b}-\epsilon <\overline{a}. \end{aligned}$$
(11)

Also,

$$\begin{aligned} {\textbf {A}}\prec {\textbf {B}}\oplus [\epsilon ,\epsilon ]&\implies&[\underline{a},\overline{a}]\prec [\underline{b}+\epsilon ,\overline{b}+\epsilon ]\nonumber \\&\implies&\underline{a}<\underline{b}+\epsilon ~\text {and}~\overline{a}<\overline{b}+\epsilon . \end{aligned}$$
(12)

From eqs. (11) and (12), we have

$$\begin{aligned}{} & {} \underline{b}-\epsilon<\underline{a}<\underline{b}+\epsilon ~\text {and}~\overline{b}-\epsilon<\overline{a}<\overline{b}+\epsilon \\{} & {} \quad \implies |\underline{a}-\underline{b}|<\epsilon ~\text {and}~|\overline{a}-\overline{b}|<\epsilon \\{} & {} \quad \implies \max \{|\underline{a}-\underline{b}|,|\overline{a}-\overline{b}|\}<\epsilon \\{} & {} \quad \text { i.e.,} \Vert {\textbf {A}}\ominus _{gH}{} {\textbf {B}}\Vert _{I(\mathbb {R})}<\epsilon . \end{aligned}$$

This completes the proof of (i). \(\square \)

Proof of (ii)

Let \({\textbf {A}}=[\underline{a},\overline{a}],~{\textbf {B}}=[\underline{b},\overline{b}]~\text {and}~\epsilon >0.\)

Consider \({\textbf {A}}\ominus _{gH}[\epsilon ,\epsilon ]\nprec {\textbf {B}}\). This implies \([\underline{a}-\epsilon ,\overline{a}-\epsilon ]\nprec [\underline{b},\overline{b}].\) Thus, \(`\underline{b}\le \underline{a}-\epsilon ~\text { and}~\overline{b}\le \overline{a}-\epsilon \)’ or \(`\underline{b}<\underline{a}-\epsilon ~\text {and}~\overline{b}>\overline{a}-\epsilon \)’ or \(`\underline{b}>\underline{a}-\epsilon ~\text {and}~\overline{b}<\overline{a}-\epsilon \)’. Let us consider all these three possibilities in the following three cases.

  • Case 1. \(\underline{b}\le \underline{a}-\epsilon ~\text {and}~\overline{b}\le \overline{a}-\epsilon \). So, we have

    $$\begin{aligned}{} & {} \underline{a}>\underline{b}~\text {and}~\overline{a}>\overline{b},~\text {because}~\epsilon >0\\{} & {} \quad \implies {\textbf {B}}\prec {\textbf {A}}\implies {\textbf {A}}\npreceq {\textbf {B}}. \end{aligned}$$
  • Case 2. \(\underline{b}<\underline{a}-\epsilon ~\text {and}~\overline{b}>\overline{a}-\epsilon \). Since \(\underline{b}<\underline{a}-\epsilon \), so \(\underline{a}>\underline{b}\), and thus \({\textbf {A}}\npreceq {\textbf {B}}.\)

  • Case 3. \(\underline{b}>\underline{a}-\epsilon ~\text {and}~\overline{b}<\overline{a}-\epsilon .\) Since \(\overline{b}<\overline{a}-\epsilon \), so \(\overline{a}>\overline{b},~\text {and thus}~{\textbf {A}}\npreceq {\textbf {B}}.\)

Hence, proof of (ii) is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Ghosh, D. Ekeland’s variational principle for interval-valued functions. Comp. Appl. Math. 42, 28 (2023). https://doi.org/10.1007/s40314-022-02173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02173-x

Keywords

Mathematics Subject Classification

Navigation