Skip to main content
Log in

On convergent finite difference schemes for variational–PDE-based image processing

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study an adaptive anisotropic Huber functional-based image restoration scheme. Using a combination of L2–L1 regularization functions, an adaptive Huber functional-based energy minimization model provides denoising with edge preservation in noisy digital images. We study a convergent finite difference scheme based on continuous piecewise linear functions and use a variable splitting scheme, namely the Split Bregman (In: Goldstein and Osher, SIAM J Imaging Sci 2(2):323–343, 2009) algorithm, to obtain the discrete minimizer. Experimental results are given in image denoising and comparison with additive operator splitting, dual fixed point, and projected gradient schemes illustrates that the best convergence rates are obtained for our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Semen Aronovich Geršgorin’s work [23] in 1930 was the first paper to treat the important topic of the convergence of finite-difference approximations to the solution of Laplace-type equations.

  2. We assume Gaussian noise, i.e., \(n\sim \mathcal {N}(0,\sigma _n)\).

  3. Note we use the notation \(\nabla \) to denote the gradient and in the space of bounded variation functions BV it is infact a Radon measure and is understood in the sense of distributions. The equality \(\int _{\Omega } \left| Du \right| = \int _{\Omega } \left| \nabla u \right| \) dx is true when \(u\in W^{1,1}(\Omega )\).

  4. Evolution of the Step edge synthetic image mesh under different schemes is available as movies in the supplementary material.

  5. Using MATLAB command imnoise(\(u_0\),’gaussian’,0,\(\sigma _n\))

  6. Using MATLAB command edge(\(u_0\),‘canny’). The edges are computed from each of the red, green, and blue channels (images) and the final result is shown by combining them again into a color image. Note that the Canny edge detector employs non-maximal suppression to avoid small scale edges.

References

  1. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equation and calculus of variations. Springer-Verlag, New York

    MATH  Google Scholar 

  2. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(18):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  3. Black MJ, Rangarajan A (1996) On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int J Comput Vis 19(1):57–91

    Article  Google Scholar 

  4. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  Google Scholar 

  5. Carlini E, Ferretti R (2012) A semi-Lagrangian approximation for the AMSS model of image processing. Appl Numer Math 73:16–32

  6. Caselles V, Sapiro G, Chung DH (2000) Vector median filters, inf-sup operations, and coupled PDE’s: theoretical connections. J Math Imaging Vis 12(2):109–119

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle A (1995) Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J Appl Math 55(3):827–863

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle A (1999) Finite-differences discretizations of the Mumford–Shah functional. M2AN Math Model Numer Anal 33(2):261–288

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97

    MathSciNet  MATH  Google Scholar 

  10. Chambolle A, Levine S, Lucier BJ (2011) An upwind finite-difference method for total variation based image smoothing. SIAM J Imaging Sci 4(1):277–299

    Article  MathSciNet  MATH  Google Scholar 

  11. Chambolle A, Lions PL (1997) Image recovery via total variation minimization and related problems. Numer Math 76(2):167–188

    Article  MathSciNet  MATH  Google Scholar 

  12. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan TF, Mulet P (1999) On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J Numer Anal 36(2):354–367

    Article  MathSciNet  MATH  Google Scholar 

  14. Chan TF, Shen J (2005) Image processing and analysis: variational, PDE, wavelet, and stochastic methods. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  15. Chen K (2005) Adaptive smoothing via contextual and local discontinuities. IEEE Trans Pattern Anal Mach Intell 27(10):1552–1567

    Article  MathSciNet  Google Scholar 

  16. Chen Y, Levine S, Rao M (2006) Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math 66(4):1383–1406

    Article  MathSciNet  MATH  Google Scholar 

  17. Chu CK, Glad IK, Godtliebsen F, Marron JS (1998) Edge-preserving smoothers for image processing. J Am Stat Assoc 93(442):526–541

    Article  MathSciNet  MATH  Google Scholar 

  18. de Araujo AF, Constantinou CE, Tavares JMRS (2014) New artificial life model for image enhancement. Expert Syst Appl 41(13):5892–5906

    Article  Google Scholar 

  19. de Araujo AF, Constantinou CE, Tavares JMRS (2016) Smoothing of ultrasound images using a new selective average filter. Expert Syst Appl 60:96–106

    Article  Google Scholar 

  20. Dobson DC, Vogel CR (1997) Convergence of an iterative method for total variation denoising. SIAM J Numer Anal 34(5):1779–1791

    Article  MathSciNet  MATH  Google Scholar 

  21. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  MATH  Google Scholar 

  22. Geman S, McClure D (1987) Statistical methods for tomographic image reconstruction. In: Proceedings of the 46th session of the ISI, bulletin of the ISI, vol 52, pp 22–26

  23. Gersgorin SA (1930) Fehlerabschätzung für das differenzverfahren zur lösung partieller differentialgleichungen. J Angew Math Mech 10:373–382

    Article  Google Scholar 

  24. Giusti F (1984) Minimal surfaces and functions of bounded variation. Birkhauser, Basel

    Book  MATH  Google Scholar 

  25. Glowinski R, Marrocco A (1975) Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de dirichlet nonlineaires. Rev Francaise dAut Inf Rech Oper R(2):41–76

  26. Goldstein T, Bresson X, Osher S (2010) Geometric applications of the split Bregman method: segmentation and surface reconstruction. J Sci Comput 45(1–3):272–293

    Article  MathSciNet  MATH  Google Scholar 

  27. Goldstein T, Osher S (2009) The split Bregman algorithm for L1 regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  28. Gulo CASJ, de Arruda HF, de Araujo AF, Sementille AC, Tavares JMRS (2016) Efficient parallelization on gpu of an image smoothing method based on a variational model. J Real-Time Image Proc 1–13. doi:10.1007/s11554-016-0623-x

  29. Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  30. Jia R-Q, Zhao HQ, Zhao W (2009) Convergence analysis of the Bregman method for the variational model of image denoising. Appl Comput Harmon Anal 27(3):367–379

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang Q (2012) Correspondence between frame shrinkage and high-order nonlinear diffusion. Appl Numer Math 62(1):51–66

    Article  MathSciNet  MATH  Google Scholar 

  32. Kaccur J, Mikula K (1995) Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl Numer Math 17(1):47–59

    Article  MathSciNet  MATH  Google Scholar 

  33. Li SZ (1995) Markov field random modeling in computer vision. Springer, Berlin

    Book  Google Scholar 

  34. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  35. Prasath VBS (2011) Weighted Laplacian differences based multispectral anisotropic diffusion. In: IEEE international geoscience and remote sensing symposium (IGARSS), pp 4042–4045, Vancouver BC, Canada

  36. Prasath VBS (2011) A well-posed multiscale regularization scheme for digital image denoising. Int J Appl Math Comput Sci 21(4):769–777

    Article  MathSciNet  MATH  Google Scholar 

  37. Prasath VBS, Moreno JC, Palaniappan K (2013) Color image denoising by chromatic edges based vector valued diffusion. Preprint, 2013. Available at http://arxiv.org/abs/1304.5587

  38. Prasath VBS, Singh A (2010) A hybrid convex variational model for image restoration. Appl Math Comput 215(10):3655–3664

    MathSciNet  MATH  Google Scholar 

  39. Prasath VBS, Singh A (2010) Multispectral image denoising by well-posed anisotropic diffusion scheme with channel coupling. Int J Remote Sens 31(8):2091–2099

    Article  Google Scholar 

  40. Prasath VBS, Singh A (2010) Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising. J Appl Math 14 :763847. doi:10.1155/2010/763847

  41. Prasath VBS, Singh A (2012) An adaptive anisotropic diffusion scheme for image restoration and selective smoothing. Int J Image Graph 12(1):18

    Article  Google Scholar 

  42. Prasath VBS, Vorotnikov D (2012) On a system of adaptive coupled PDES for image restoration. J Math Imaging Vis, Online First, 2012. Available at arXiv:1112.2904

  43. Rey WJJ (1983) Introduction to robust and quasirobust statistical methods. Springer-Verlag, Berlin

    Book  Google Scholar 

  44. Rivera M, Marroquin JL (2003) Efficient half-quadratic regularization with granularity control. Image Vis Comput 21(4):345–357

    Article  Google Scholar 

  45. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268

    Article  MathSciNet  MATH  Google Scholar 

  46. Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2009) Variational methods in imaging. Springer-Verlag, New York

    MATH  Google Scholar 

  47. Setzer S (2011) Operator splittings, Bregman methods and frame shrinkage in image processing. Int J Comput Vis 92(3):265–280

    Article  MathSciNet  MATH  Google Scholar 

  48. Shi Y, Chang Q (2008) Acceleration methods for image restoration problem with different boundary conditions. Appl Numer Math 58(5):602–614

    Article  MathSciNet  MATH  Google Scholar 

  49. Spitaleri RM, March R, Arena D (2001) A multigrid finite-difference method for the solution of Euler equations of the variational image segmentation. Appl Numer Math 39(2):181–189

    Article  MathSciNet  MATH  Google Scholar 

  50. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tapen M, Rother C (2008) A comparative study of energy minimization methods for Markov random fields with smoothness based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  Google Scholar 

  51. Tikhonov AN, Aresenin VY (1997) Solutions of ill-posed problems. Wiley, New York

    Google Scholar 

  52. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishers, Reading, MA, USA

  53. Weickert J (1998) Anisotropic diffusion in image processing. B.G. Teubner-Verlag, Stuttgart

    MATH  Google Scholar 

  54. Weickert J, Romeny BMH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410

    Article  Google Scholar 

  55. Weiss P, Blanc-Feraud L, Aubert G (2009) Efficient schemes for total variation minimization under constraints in image processing. SIAM J Sci Comput 31(3):2047–2080

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu T-T, Yang Y-F, Pang Z-F (2012) A modified fixed-point iterative algorithm for image restoration using fourth-order PDE model. Appl Numer Math 62(2):79–90

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu G (2013) Consistent approximations of several geometric differential operators and their convergence. Appl Numer Math 69:1–12

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhu M, Chan TF (2008) An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report 08–34, UCLA CAM

  59. Zhu M, Wright SJ, Chan TF (2010) Duality-based algorithms for total-variation-regularized image restoration. Comput Optim Appl 47(3):377–400

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Surya Prasath.

Additional information

Communicated by José Mario Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasath, V.B.S., Moreno, J.C. On convergent finite difference schemes for variational–PDE-based image processing. Comp. Appl. Math. 37, 1562–1580 (2018). https://doi.org/10.1007/s40314-016-0414-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0414-9

Keywords

Mathematics Subject Classification

Navigation