Skip to main content
Log in

Assessment of Nonlinear Solutions Applied to Parameter Estimation of Power Transmission Systems

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper proposes an analysis of the nonlinear least-squares methods applied to parameter estimation of overhead transmission lines and underground/submarine cables in offshore applications. Three optimization algorithms are applied to solve the estimation problem, varying the noise level, number of samples obtained from phasor measurement units (PMUs), and initial guess. The noise modeling is carried out based on a Gaussian distribution, i.e., white Gaussian noise. Three nonlinear solutions are applied to the estimation problem: the Gauss–Newton method, Trust-Region, and the Levenberg–Marquardt method. The accuracy and robustness of each method vary with the number of samples, noise level, load, and most importantly, initial guess. Results show that in generic and practical scenarios, in which parameters are unknown, the Levenberg–Marquardt method proved to be more robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Fig. 3
Algorithm 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asprou, M., Kyriakides, E., & Albu, M. M. (2018). Uncertainty bounds of transmission line parameters estimated from synchronized measurements. IEEE Transactions on Instrumentation and Measurement, 68(8), 2808–2818.

    Article  Google Scholar 

  • Bendjabeur, A., Kouadri, A., & Mekhilef, S. (2019). Novel technique for transmission line parameters estimation using synchronised sampled data. IET Generation, Transmission & Distribution, 14(3), 506–515.

    Article  Google Scholar 

  • Berghen, F. V. (2004). Condor: A constrained, non-linear, derivative-free parallel optimizer for continuous, high computing load, noisy objective functions. PhD thesis, Université Libre de Bruxelles - Faculté des Sciences Appliquées

  • Bhatia, R. (2007). Positive definite matrices. Princeton University Press.

    Google Scholar 

  • Blattner, C. (1980). Prediction of soil resistivity and ground rod resistance for deep ground electrodes. IEEE Transactions on Power Apparatus and Systems, 5(5), 1758–1763.

    Article  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2018). Introduction to applied linear algebra: Vectors, matrices, and least squares. Cambridge University Press.

    Book  Google Scholar 

  • Brown, M., Biswal, M., Brahma, S., Ranade, S. J., & Cao, H. (2016). Characterizing and quantifying noise in PMU data. In 2016 IEEE Power and energy society general meeting (PESGM) (pp. 1–5). IEEE

  • Casella, G., & Berger, R. L. (2021). Statistical inference. Cengage Learning.

    Google Scholar 

  • Cintula, B., Eleschová, Ž, Cenkỳ, M., et al. (2021). Three-phase and single-phase measurement of overhead power line impedance evaluation. Energies, 14(19), 6314.

    Article  Google Scholar 

  • Coleman, T., Branch, M. A., Grace, A. (1999). Optimization toolbox. For Use with MATLAB User’s Guide for MATLAB 5, Version 2, Relaese II

  • Costa, E., Pineda, J., & Kurokawa, S. (2015). Parameter estimation of transmission lines using fault records and modal analysis. IET Generation, Transmission and Distribution

  • Dasgupta, K., & Soman, S. (2013). Line parameter estimation using phasor measurements by the total least squares approach. In 2013 IEEE power & energy society general meeting (pp. 1–5). IEEE

  • Ding, L., Bi, T., & Zhang, D. (2011). Transmission line parameters identification based on moving-window TLS and PMU data. In 2011 International conference on advanced power system automation and protection (pp. 2187–2191). IEEE

  • Du, Y., & Liao, Y. (2012). On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electric Power Systems Research, 93, 39–45.

    Article  Google Scholar 

  • Fachinotti, V., Anca, A., & Cardona, A. (2011). A method for the solution of certain problems in least squares. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 595–607.

    Article  MathSciNet  Google Scholar 

  • Fröhlich, F., & Sorger, P. K. (2022). Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models. PLOS Computational Biology, 18(7), e1010322.

    Article  Google Scholar 

  • Fu, J., Song, G., & De Schutter, B. (2020). Influence of measurement uncertainty on parameter estimation and fault location for transmission lines. IEEE Transactions on Automation Science and Engineering

  • Geis-Schroer, J., Hubschneider, S., Held, L., et al. (2021). Modeling of German low voltage cables with ground return path. Energies, 14(5), 1265.

    Article  Google Scholar 

  • Guo, D., Wang, P., Zheng, W., et al. (2021). Investigation of sag behaviour for aluminium conductor steel reinforced considering tensile stress distribution. Royal Society Open Science, 8(8), 210049.

    Article  Google Scholar 

  • Hofmann, L. (2002). Series expansions for line series impedances considering different specific resistances, magnetic permeabilities, and dielectric permittivities of conductors, air and ground. Power Engineering Review, IEEE, 22, 80–80. https://doi.org/10.1109/MPER.2002.4312156

    Article  Google Scholar 

  • Indulkar, C., & Ramalingam, K. (2008). Estimation of transmission line parameters from measurements. International Journal of Electrical Power & Energy Systems, 30(5), 337–342.

    Article  Google Scholar 

  • Janeček, E., Hering, P., Janeček, P., & Popelka, A. (2011). Transmission line identification using PMUs. In 2011 10th international conference on environment and electrical engineering (pp. 1–4). IEEE

  • Kundur, P., Balu, N. J., & Lauby, M. G. (1994). Power system stability and control (Vol. 7). McGraw-Hill.

    Google Scholar 

  • Lavezzi, G., Guye, K., & Ciarcià, M. (2022). Nonlinear programming solvers for unconstrained and constrained optimization problems: A benchmark analysis. arXiv preprint arXiv:2204.05297

  • Lerro, D., & Bar-Shalom, Y. (1993). Tracking with debiased consistent converted measurements versus EKF. IEEE Transactions on Aerospace and Electronic Systems, 29(3), 1015–1022.

    Article  Google Scholar 

  • Li, C., Zhang, Y., Zhang, H., et al. (2017). Measurement-based transmission line parameter estimation with adaptive data selection scheme. IEEE Transactions on Smart Grid, 9(6), 5764–5773.

    Article  Google Scholar 

  • Liao, Y., & Kezunovic, M. (2008). Online optimal transmission line parameter estimation for relaying applications. IEEE Transactions on Power Delivery, 24(1), 96–102.

    Article  Google Scholar 

  • Liboni, L. H. B., De Oliveira, M. C., & Da Silva, I. N. (2020). Optimal Kalman estimation of symmetrical sequence components. IEEE Transactions on Instrumentation and Measurement, 1–1

  • Logsdon, S. D., & Laird, D. A. (2004). Electrical conductivity spectra of smectites as influenced by saturating cation and humidity. Clays and Clay Minerals, 52(4), 411–420.

    Article  Google Scholar 

  • Lourakis, M. I., et al. (2005). A brief description of the Levenberg–Marquardt algorithm implemented by levmar. Foundation of Research and Technology, 4(1), 1–6.

    Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

    Article  MathSciNet  Google Scholar 

  • Meliopoulos, A. S., Cokkinides, G. J., Galvan, F., & Fardanesh, B. (2006). GPS-synchronized data acquisition: technology assessment and research issues. In Proceedings of the 39th annual Hawaii international conference on system sciences (HICSS’06) (pp. 244c–244c). IEEE

  • Milojević, V., Čalija, S., Rietveld, G., et al. (2018). Utilization of PMU measurements for three-phase line parameter estimation in power systems. IEEE Transactions on Instrumentation and Measurement, 67(10), 2453–2462.

    Article  Google Scholar 

  • Monteiro, J. H. A., Costa, E. C. M., Pinto, A. J. G., et al. (2013). Simplified skin-effect formulation for power transmission lines. IET Science, Measurement & Technology, 8(2), 47–53.

    Article  Google Scholar 

  • Moré, J. J. (1978). The Levenberg–Marquardt algorithm: Implementation and theory. Numerical analysis (pp. 105–116). Springer.

    Chapter  Google Scholar 

  • Nielsen, H. B., et al. (1999). Damping parameter in Marquardt’s method. IMM

  • Pegoraro, P. A., Castello, P., Muscas, C., Brady, K., & Von Meier, A. (2017). Handling instrument transformers and PMU errors for the estimation of line parameters in distribution grids. In 2017 IEEE International workshop on applied measurements for power systems (AMPS) (pp. 1–6). IEEE

  • Raven, M. S. (2018). Skin effect in the time and frequency domain-comparison of power series and Bessel function solutions. Physics Communications, 2(035028)

  • Ruixiang, T., Yongtao, J., Naiyi, L., Shaohe, W., Yong, Y., & Te, L. (2019). Calculation of capacitance parameters of XLPE submarine cable based on finite element method. In 2019 IEEE 3rd international conference on circuits, systems and devices (ICCSD) (pp. 45–49). IEEE

  • Schulze, R., Schegner, P., & Zivanovic, R. (2011). Parameter identification of unsymmetrical transmission lines using fault records obtained from protective relays. IEEE Transactions on Power Delivery, 26(2), 1265–1272.

    Article  Google Scholar 

  • Shi, D., Tylavsky, D. J., Koellner, K. M., et al. (2011). Transmission line parameter identification using PMU measurements. European Transactions on Electrical Power, 21(4), 1574–1588.

  • Sivanagaraju, G., Chakrabarti, S., & Srivastava, S. C. (2013). Uncertainty in transmission line parameters: Estimation and impact on line current differential protection. IEEE Transactions on Instrumentation and Measurement, 63(6), 1496–1504.

  • Sobrinho, A. S. F., Flauzino, R. A., Liboni, L. H. B., et al. (2018). Proposal of a fuzzy-based PMU for detection and classification of disturbances in power distribution networks. International Journal of Electrical Power & Energy Systems, 94, 27–40.

    Article  Google Scholar 

  • Stevenson, W., Jr., & Grainger, J. (1994). Power system analysis. McGraw-Hill Education.

    Google Scholar 

  • Teunissen, P. (1990). Nonlinear least squares. Manuscripta Geodaetica

  • Transtrum, M. K., & Sethna, J. P. (2012). Improvements to the Levenberg–Marquardt algorithm for nonlinear least-squares minimization. arXiv preprint arXiv:1201.5885

  • Trefethen, L. N., & Bau, D., III. (1997). Numerical linear algebra (Vol. 50). SIAM.

    Book  Google Scholar 

  • Vanfretti, L., Baudette, M., & White, A. D. (2017). Monitoring and control of renewable energy sources using synchronized phasor measurements. Renewable energy integration (pp. 419–434). Elsevier.

    Chapter  Google Scholar 

  • Vlahinic, S., Frankovic, D., DHurovic M. Z., & Stojkovic, N. (2021). Measurement uncertainty evaluation of transmission line parameters. IEEE Transactions on Instrumentation and Measurement, 70, 1–7.

  • Wardana, F. T., & Setiabudy, R. (2019). Study of increasing surge impedance loading (SIL) and voltage at DEPOK substation by changing TASIK-DEPOK 500 kv transmission line’s configuration. In 2nd International conference on high voltage engineering and power systems, ICHVEPS 2019 (p. 9011077). Institute of Electrical and Electronics Engineers Inc.

  • Wehenkel, A., Mukhopadhyay, A., Le Boudec, J. Y., & Paolone, M. (2020). Parameter estimation of three-phase untransposed short transmission lines from synchrophasor measurements. IEEE Transactions on Instrumentation and Measurement.

  • Wilson, P., & Mantooth, H. A. (2013). Model-based engineering for complex electronic systems. Newnes.

    Google Scholar 

  • Xie, L., Chen, Y., & Kumar, P. (2014). Dimensionality reduction of synchrophasor data for early event detection: Linearized analysis. IEEE Transactions on Power Systems, 29(6), 2784–2794.

    Article  Google Scholar 

  • Yuying, L. (1993). Centering, trust region, reflective techniques for nonlinear minimization subject to bounds. Cornell University

Download references

Acknowledgements

Authors acknowledge CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. CNPq—National Council for Scientific and Technological Development (Grant 408681/2016-0 and 402830/2021-0). FAPESP—São Paulo Research Foundation (Grants 2019/05381-9 and 2021/01325-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro P. A. Nina Duarte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Deductions and Expressions

Appendix A: Deductions and Expressions

1.1 Appendix A.1: Description of the Exact Matrix Equation

The elements of the exact matrix equation are described by

$$\begin{aligned}&\varvec{{\bar{Y}}}=\begin{bmatrix} {\bar{V}}_{ei}+{\bar{V}}_{si} \\ {\bar{V}}_{er}+{\bar{V}}_{sr} \\ {\bar{V}}_{er}-{\bar{V}}_{sr} \\ {\bar{V}}_{ei}-{\bar{V}}_{si} \\ {\bar{V}}_{er}-{\bar{V}}_{sr} \\ {\bar{V}}_{ei}-{\bar{V}}_{si} \end{bmatrix},\\&\varvec{{\bar{f}}}(\varvec{\theta })= \begin{bmatrix} -(2/b){\bar{I}}_{er}-(2/b){\bar{I}}_{sr} \\ (2/b) {\bar{I}}_{ei}+(2/b){\bar{I}}_{si} \\ \left( {\bar{I}}_{er}+(b/2){\bar{V}}_{ei} \right) R+\left( -{\bar{I}}_{ei}+(b/2) {\bar{V}}_{er}\right) X \\ \left( {\bar{I}}_{ei}-(b/2) {\bar{V}}_{er} \right) R+\left( {\bar{I}}_{er}+(b/2) {\bar{V}}_{ei}\right) X \\ \left( -(b/2){\bar{V}}_{si}-{\bar{I}}_{sr}\right) R+\left( -(b/2) {\bar{V}}_{sr}+{\bar{I}}_{si}\right) X \\ \left( (b/2){\bar{V}}_{sr}-{\bar{I}}_{si}\right) R+\left( -(b/2) {\bar{V}}_{si}-{\bar{I}}_{sr} \right) X \end{bmatrix}. \end{aligned}$$

1.2 Appendix A.2: Complete Expression of \(r(\theta )\)

The residual vector is defined as

$$\begin{aligned} \varvec{r}(\varvec{\theta })=\varvec{Y}-\varvec{f}(\varvec{\varvec{\theta }}). \end{aligned}$$

where the output vector \(\varvec{Y}\) and the nonlinear vector function \(\varvec{f}(\varvec{\theta })\) are composed of corrupted measures, i.e., considering noise. Using the definition of the vectors, the residual is completely described as

$$\begin{aligned} \varvec{r}(\varvec{\theta })&= \begin{bmatrix} V_{ei}+ V_{si} +(2/b) I_{er}+(2/b) I_{sr} \\ V_{er}+ V_{sr}- (2/b) I_{ei}-(2/b) I_{si} \\ V_{er}-V_{sr}-\left( I_{er}+(b/2) V_{ei} \right) R-\left( - I_{ei}+(b/2) V_{er}\right) X \\ V_{er}- V_{sr}-\left( I_{ei}-(b/2) V_{er} \right) R-\left( I_{er}+(b/2) V_{ei}\right) X \\ V_{er}- V_{sr}- \left( -(b/2) V_{si}- I_{sr}\right) -\left( -(b/2) V_{sr}+ I_{si}\right) X \\ V_{ei}- V_{si}-\left( (b/2) V_{sr}- I_{si}\right) R-\left( -(b/2) V_{si}- I_{sr} \right) X \end{bmatrix}\\&=\begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{bmatrix}. \end{aligned}$$

where

$$\begin{aligned} \varvec{\theta }=[b \quad R \quad X]^T. \end{aligned}$$

1.3 Appendix A.3: Simulated System Data

See Table 8.

Table 8 Transmission line parameters

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, P.P.A.N., Albuquerque, F.P.d., Costa, E.C.M.d. et al. Assessment of Nonlinear Solutions Applied to Parameter Estimation of Power Transmission Systems. J Control Autom Electr Syst 35, 116–129 (2024). https://doi.org/10.1007/s40313-023-01050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01050-0

Keywords

Navigation