Skip to main content

Advertisement

Log in

A Novel Hybrid Micro Power Control Fed by Hydro/Solar Energy

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Renewable energy sources have been widely disseminated around the world. However, due to weather fluctuations, energy storage systems are needed to supply the periods in which the renewable sources are absent. The reservoir of a hydroelectric plant is an example of energy storage that meets the demand even with climatic variations. However, in order to be able to use hydropower, an adequate land topology is necessary and the flooding of a large reservoir. The present work proposes a hybrid microgeneration composed of solar photovoltaic and hydropower in a parallel and complementary way. The daytime demand will be supplied by solar energy and the night time demand by stored water energy in a small adequate reservoir, and the grid will be the backup of the system. The methodologies used in the modeling, the system topology and the proposed control will be presented in this paper. This study highlights the feasibility of the proposal in some situations where there is no consumption or exchange of energy with the grid. The proposed topology can also be used as an off-grid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(P_\textrm{PV}\) :

Photovoltaic power

\(E_\textrm{e}\) :

Irradiance

\(A_\textrm{PV}\) :

Photovoltaic area

\(\eta _\textrm{PV}\) :

PV efficiency

\(i_\textrm{sol}\) :

Daily light

\(\theta _\textrm{delay}\) :

Setting time angle

\(\sigma _\textrm{Random}\) :

Climatic variation

\(E_\textrm{eMax}\) :

Maximum irradiance

\(\text {sign}()\) :

Math function

\(v_\textrm{GS}\) :

Penstock fluid speed

\(P_\textrm{GS}\) :

Hydropower

\(h_\textrm{GS}\) :

Effective head

\(\rho \) :

Water density

g :

Gravity constant

\(Q_\textrm{GS}\) :

Turbocharged flow

\(\eta _\textrm{GS}\) :

Hydro efficiency

\(h_\textrm{Vol}\) :

Reservoir height

\(h_0\) :

Standard head

\(C_\textrm{d}\) :

Discharge coefficient

\(t_\textrm{c}\) :

Conduction time

\(A_{0}\) :

Penstock area

\(d_0\) :

Penstock diameter

\(Q_{R}\) :

Streamflow

\(A_\textrm{GS}\) :

Reservoir area

\(P_\textrm{ref}\) :

Reference power

\(P_\textrm{STD}\) :

Standard power plant

\(P_\textrm{HHS}\) :

Proposed power plant

\(V_\textrm{cc}\) :

Bus voltage

\(V_\textrm{PV}\) :

Rated PV voltage

\(T_\textrm{s}\) :

Switching period

\(f_\textrm{s}\) :

Switching frequency

\(D_\textrm{,max}\) :

Duty cycle

\(\Delta I_\textrm{PV}\) :

Current ripple

\(\Delta I_{\%}\) :

Percent ripple

\(L_\textrm{PV}\) :

Boost inductor

\(V_\textrm{Eq}\) :

Equivalent voltage

\(V_\textrm{PR}\) :

Generator voltage

\(f_\textrm{GS}\) :

Generator frequency

\(t_\textrm{hu}\) :

hold-up-time

\(V_{\min }\) :

Min. bus voltage

\(C_\textrm{cc}\) :

Bus capacitor

\(P_\textrm{inv}\) :

Inverter power

\(L_\textrm{R}\) :

Rectifier inductor

\(m_{\alpha \beta }\) :

Modulation signal

\(L_\textrm{inv}\) :

Inverter inductor

\(V_\textrm{Pg}\) :

Grid phase voltage

\(\Delta I_\textrm{g}\) :

Grid current ripple

\(I_\textrm{Pg}\) :

Grid phase current

\(f_\textrm{g}\) :

Grid frequency

\(\lambda _\textrm{C}\) :

Reactive input tax

\(C_\textrm{inv}\) :

Filter capacitor

\(\lambda _\textrm{h}\) :

Maximum harmonic

\(\omega _\textrm{h}\) :

Harmonic frequency

\(V_\mathrm{h\%}\) :

Harmonic magnitude

\(v_{\alpha \beta ,\, \textrm{cc}}\) :

\(\alpha \beta \) and cc voltage

\(G_{*}(s)\) :

Sys. trans. function

\(\omega \) :

Angular frequency

\(L_\textrm{g}\) :

Filter inductor

\(C_\textrm{D}\) :

Damping capacitor

\(R_\textrm{d}\) :

Damping resistance

\(R_\textrm{cc}\) :

Equivalent resistance

\(V_{\alpha \beta }\) :

\(\alpha \beta \) peak voltage

\(I_{\alpha \beta }\) :

\(\alpha \beta \) peak current

\(K_\textrm{d}^P\) :

Active droop gain

\(K_\textrm{d}^Q\) :

Reactive droop gain

\(P_{\min }^{\max }\) :

Active power limits

\(\omega _{\min }^{\max }\) :

Frequency limits

\(Q_{\min }^{\max }\) :

Reactive power limits

\(V_{\min }^{\max }\) :

Voltage limits

\(\lambda \) :

Efficiency parameter

\(P_\textrm{ret}\) :

Rectifier reference

\(i_{\alpha \beta ,\, \textrm{cc}}\) :

\(\alpha \beta \) and cc current

\(C_{*}(s)\) :

Ctrl. trans. function

\(I_\textrm{cc}\) :

Bus direct current

References

  • Akagi, H., Watanabe, E. H., & Aredes, M. (2007). Instantaneous power theory and applications to power conditioning. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Andreta, A. G. (2014). Estratégia híbrida de controle para inversores trifásicos conectados à rede baseada em controladores deabeat e proporcional+ressonante. Master’s thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil.

  • Apostolopoulou, D., & McCulloch, M. (2019). Optimal short-term operation of a cascaded hydro-solar hybrid system: A case study in Kenya. IEEE Transactions on Sustainable Energy, 10(4), 1878–1889.

    Article  Google Scholar 

  • Apostolopoulou, D., Grève, Z. D., & McCulloch, M. (2018). Robust optimization for hydroelectric system operation under uncertainty. IEEE Transactions on Power Systems, 33(3), 3337–3348.

    Article  Google Scholar 

  • Atlas, G. S. (2021). Global solar atlas. (online). https://globalsolaratlas.info/.

  • Beluco, A., Souza, P. K., & Krenzinger, A. (2008). PV hydro hybrid systems. IEEE Latin America Transactions, 6(7), 626–631.

    Article  Google Scholar 

  • Borgonovo, D. (2001). Modelagem e controle de retificadores pwm trifásicos empregando a transformação de park. Master’s thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil.

  • Chandran, V. P., & Singh, B. (2020). Control of battery supported PICO hydro-PV based distributed generation for rural electrification. In IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) pp. 1–6.

  • Chandran, V. P., Kewat, S., & Singh, B. (2020). Reconfigurable two-stage solar PV-battery supported-small hydro system based micro-grid. In IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1–6).

  • Coelho, R. F. (2013). Concepção, análise e implementação de uma microrede interligada à rede elétrica para alimentação ininterrupta de cargas cc a partir de fontes renováveis. PhD thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil.

  • Earth, G. (2021). Google earth (online). https://earth.google.com/web/.

  • Fisch, L. B.K . (2021). Modelagem, controle e operação de um sistema direct-drive de conversão de energia eólica de 10 mw. Master’s thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil.

  • Hidreo. (2021). Hidreo (online). https://hidreo.com.br/.

  • INMET. (2021). Instituto nacional de meteorologia (online) https://portal.inmet.gov.br/.

  • INPE. (2021). Centro de previsão de tempo e estudos climáticos (online). http://tempo.cptec.inpe.br/.

  • Joian, R., Petreuş, D., & Etz, R., et al. (2013). The experimental stand for the study of the hydro wind hybrid power stations. In IEEE 19th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 153–157).

  • Lawal, K.O. (2015). Hydro-based, renewable hybrid energy system for rural/remote electrification in Nigeria. In Clemson University Power Systems Conference (PSC) (pp. 1–6).

  • Lazzarin, T. B., & Barcelos, R. P. (2019). Retificadores PWM Monofásicos para Correção de Fator de Potência. In dos Autores (Ed.), Florianópolis, SC.

  • Leite, V., Couto, J., & Ferreira, A., et al. (2016). A practical approach for grid-connected pico-hydro systems using conventional photovoltaic inverters. In: IEEE International Energy Conference (ENERGYCON) (pp. 1–6).

  • Martins, D. C., & Barbi, I. (2006). Eletrônica de Potência: Conversores CC-CC básicos não isolados. In dos Autores, 2nd edn, Florianópolis, SC.

  • Mohamed, Y. A. I., & El-Saadany, E. F. (2008). Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Transactions on Power Electronics, 23(6), 2806–2816.

    Article  Google Scholar 

  • Mohd, A., Ortjohann, E., Morton, D., et al. (2010). Review of control techniques for inverters parallel operation. Electric Power Systems Research, 80, 1477–1487.

    Article  Google Scholar 

  • ONS. (2021). Organizador nacional do sistema (online). http://www.ons.org.br/.

  • Papaefthymiou, S. V., Karamanou, E. G., Papathanassiou, S. A., et al. (2010). A wind-hydro-pumped storage station leading to high res penetration in the autonomous island system of Ikaria. IEEE Transactions on Sustainable Energy, 1(3), 163–172.

    Article  Google Scholar 

  • Provenza, F. (Ed.). (1996). PROTEC - Prontuário de Projetista de Máquinas (71st ed.). Brazil: São Paulo.

    Google Scholar 

  • Qiu, Y., Lin, J., Liu, F., et al. (2020). Stochastic online generation control of cascaded run-of-the-river hydropower for mitigating solar power volatility. IEEE Transactions on Power Systems, 35(6), 4709–4722.

    Article  Google Scholar 

  • Ruan, X., Wang, X., Pan, D., et al. (2018). Control techniques for LCL-type grid-connected inverters. Beijing: Science Press.

    Book  MATH  Google Scholar 

  • Sheng, W. C., Hua, L., & Long, Y. Z., et al. (2009). Research on control strategies of small-hydro/PV hybrid power system. In International Conference on Sustainable Power Generation and Supply (pp. 1–5).

  • Silva, L. M. R., Beluco, A., & Daronco, G. (2020). A wind PV diesel hybrid system for energizing a sewage station in Santa Rosa, in Southern Brazil. IEEE Latin America Transactions, 18(4), 773–780.

    Article  Google Scholar 

  • Teodorescu, R., Liserre, M., & Rodríguez, P. (2011). Grid converters for photovoltaic and wind power systems. Chichester: Wiley.

    Book  Google Scholar 

  • Turbulent. (2021). Turbulent (online). https://www.turbulent.be/.

Download references

Acknowledgements

The authors thank their colleagues at INEP and GEPOC for their collaboration in this work. Thanks for the opportunity provided by the INCT-GD and Brazilians sponsors (CNPq Process 465640/2014-1, CAPES Process No. 23038.000776/2017-54 and FAPERGS 17/2551-0000517-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdecir Junior De Paris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Paris, V.J., Morais Carnielutti, F.d. & Martins, D.C. A Novel Hybrid Micro Power Control Fed by Hydro/Solar Energy. J Control Autom Electr Syst 34, 808–819 (2023). https://doi.org/10.1007/s40313-023-00998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-00998-3

Keywords

Navigation