Skip to main content
Log in

An Improved Torque Ripple Reduction Controller for Smooth Operation of Induction Motor Drive

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper describes the development of a state-of-the-art controller for induction motor drive to achieve smooth speed control under its different running conditions. The controller adopts indirect field-oriented control (IFOC) scheme for precise estimation of equivalent circuit parameters (ECPs) to generate PWM signals. The challenges for estimation of ECPs during the running condition due to change in motor temperature as well as the sudden change in its loading are dealt with a model reference adaptive system (MRAS) controller. The H–G diagram method-based reference model is utilized to estimate the reference ECPs without performing any physical tests of the motor. The backpropagation algorithm with an artificial neural network (BPANN) is utilized in its plant model while the weight and gain parameters of this model are tuned based on reference ECPs. The AdaDelta rule is utilized for fast convergence of the BPANN weights during starting conditions while stator temperature and other feedback enhance the overall performance with increased accuracy in ripple-free speed regulation. The results from MATLAB-based simulation and a hardware prototype controller using a DSPIC microcontroller with different running conditions show the efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

In this work, no data have been taken from the internet. The machine specifications that have been utilized are present in the laboratory of our department.

Abbreviations

AD:

AdaDelta optimizer

AI:

Artificial intelligence

ANN:

Artificial neural network

ASD:

Adjustable speed drive

BPANN:

Backpropagation artificial neural network

CNN:

Convolution neural network

DSP:

Digital signal processing

ECPs :

Equivalent circuit parameters

EKF:

Extended Kalman’s filter

FLC:

Fuzzy logic controller

FOC:

Field-oriented control

GA:

Genetic algorithm

GD:

Gradient descent method

GNN:

Graphical neural networks

GSA:

Gravitational search algorithm

GUI:

Graphical user interface

IFOC:

Indirect field-oriented control

IM:

Induction motor

LSTM:

The long short-term memory

MMU:

Machine monitoring unit

MRAS:

Model reference adaptive structure

NN:

Neural network

PSD:

Phase-sensitive detector

PSO:

Particle swarm optimization

PT:

Physical test

PWM:

Pulse width modulation

RNN:

Recurrent neural network

V s :

Rated stator voltage

I s :

Rated stator current

I nl :

No-load current

ψ nl :

No-load flux

V an, V bn, V cn :

Instantaneous phase voltages of IM

N r :

Rated speed

P out, P rcl, P scl, P nl :

Rated power, Rotor copper loss, Stator copper-loss, No-load power

f, s :

Frequency, slip

p f , p fnl :

Power factor rated, power factor at no load

T :

Temperature at start

T e :

Electromechanical torque

v ds, v qs :

D–q axis stator voltage

v dr, v qr :

D–q axis rotor voltage

v α ,v β :

α–β Axis voltage

P :

Active power referred to the α–β axis

Q :

Reactive power referred to the α–β axis

i ds, i qs :

D–q axis stator current

i dr, i qr :

D–q axis rotor current

ψ ds, ψ qs , ψ qr , ψ dr :

D–q axis flux

I r :

Rotor current

R s :

Stator resistance

R r :

Rotor resistance

X s :

Stator reactance

X s :

Stator reactance

X r :

Rotor reactance

L s :

Stator inductance

L r :

Rotor inductance

X m :

Magnetizing reactance

t 1, t 2, t 0 :

Switching instances of SPWM

ω r :

Rotor angular speed

L m :

Magnetizing inductance

R s1 :

Stator resistance of MR

R r1 :

Rotor resistance of MR

L s1 :

Stator inductance of MR

L s2 :

Rotor inductance of MR

L m1 :

Mutual inductance of MR

Z eqR :

Per phase impedance of MR

Z eqP :

Per phase impedance of MP

Z eq :

Per phase impedance

v svm :

Voltage vector of SVM

T pwm :

The time period of PWM

M :

Modulation index

G 1 :

Controller gain of the flux flow path

G 2 :

Controller gain of the torque flow path

G 3 :

Controller gain of the slip frequency

ω s :

Synchronous speed

ω r :

Rotor speed

ω sl :

Slip speed

τ R :

Rotor time constant

M R , M P :

Reference and plant model

h :

Hidden layer

S :

Activation function

η :

Learning rate

g n :

Gradient

r n :

Summation of the squared term of gradients

w d :

Window size

w (n + 1) :

Modified weight after nth iterations

w n :

Current weight of nth iterations

y :

The output of the forward path

Y MR , Y MP :

Output ECP for reference and plant model

b, e :

Loss function and error

References

  • Awadallah, M. A. (2008). Parameter estimation of induction machines from nameplate data using particle swarm optimisation and genetic algorithm techniques. Electric Power Components and Systems, 36(8), 801–814. https://doi.org/10.1080/15325000801911393

    Article  Google Scholar 

  • BENBOUZID (2003). The HG diagram model for induction motors analysis: Theoretical approach and applications. Electric Power Components and Systems, 31(3),211–239, https://doi.org/10.1080/15325000390112161

  • Bhowmick, D., Manna, M., & Chowdhury, S. K. (2018). Estimation of equivalent circuit parameters of transformer and induction motors from load data. IEEE Transaction on Industry Applications, 54(3), 2784–2791. https://doi.org/10.1109/tia.2018.2790378

    Article  Google Scholar 

  • Bose, B. K. (2002). Modern power electronics and AC drives. Prentice- Hall: Englewood Cliffs NJ, USA; ISBN 0–13–016743–6.

  • Cao, P., Zhang, X., & Yang, S. (2017). A unified-model-based analysis of MRAS for online rotor time constant estimation in an induction motor drive. IEEE Transaction on Industrial Electronics, 64(6), 4361–4371. https://doi.org/10.1109/tie.2017.2668995

    Article  Google Scholar 

  • Çetin, O., Dalcalı, A., & Temurtaş, F. (2020). A comparative study on parameters estimation of squirrel cage induction motors using neural networks with unmemorized training. Emerging Science and Technology, an International Journal,. https://doi.org/10.1016/j.jestch.2020.03.011

    Article  Google Scholar 

  • Chacko, S., Bhende, C. N., Jain, S., & Nema, R. K. (2016). Rotor resistance estimation of vector controlled induction motor drive using GA/ PSO tuned fuzzy controller. International Journal on Electrical Engineering and Informatics, 8(1), 218.

    Article  Google Scholar 

  • Chaturvedi, D. K., & Singh, M. P. (2019). Online equivalent circuit parameter estimation of three-phase induction motor using ANN. Journal of the Institution of Engineers (india) Series B, 100(4), 343–347.

    Article  Google Scholar 

  • Dubey, A. K., & Jain, V. (2019). Comparative study of convolution neural network’s relu and leaky-relu activation functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering (pp. 873–880). Springer, Singapore. http://doi.org/https://doi.org/10.1007/978-981-13-6772-4_76.

  • Fortes, M. Z., Ferreira, V. H., & Coelho, A. P. F. (2013). The induction motor parameter estimation using genetic algorithm. IEEE Latin America Transactions. https://doi.org/10.1109/tla.2013.6684404

    Article  Google Scholar 

  • Haque, M. H. (2008). Determination of NEMA design induction motor parameters from manufacturer data. IEEE Transaction on Energy Conversion, 23(4), 997–1004. https://doi.org/10.1109/tec.2008.2001451

    Article  Google Scholar 

  • He, Y., Wang, Y., & Feng, Y. (2010). Parameter identification of an induction machine at standstill using vector construction method. IEEE Transaction on Power Electronics, 27(2), 905–915. https://doi.org/10.1109/tpel.2010.2089699

    Article  Google Scholar 

  • IEEE Std 112, (1991). Test procedure for polyphase induction motors and generators institute of electrical and electronics engineers: New York, NY, USA, https://doi.org/10.1109/ieeestd.1984.82451.

  • Jirdehi, M. A., & Rezaei, A. (2016). Parameter estimation of squirrel-cage induction motors using ANN and ANFIS. Alexandria Engineering Journal, 55(1), 357–368. https://doi.org/10.1016/j.aej.2016.01.026

    Article  Google Scholar 

  • Kan, J., Zhang, K., & Wang, Z. (2015). Indirect vector control with simplified rotor resistance adaption for induction machines. IET Power Electronics, 8(7), 1284–1294.

    Article  Google Scholar 

  • Karanayil, B., Rahman, M. F., & Grantham, C. (2007). Online stator and rotor resistance estimation using artificial neural networks for vector controlled speed snsorless induction motor drive. IEEE Transaction on Industrial Electronics, 54(1), 167–176. https://doi.org/10.1109/tie.2006.888778

    Article  Google Scholar 

  • Laowanitwattana, J. & Uatrongjit, S., (2015, October). Induction motor states and parameter estimation using Extended Kalman filter with reduced number of measurements. 18th International conference on Electrical Machines and Systems (ICEMS) (pp. 1631–1635). Thailand: IEEE. http://doi.org/https://doi.org/10.1109/icems.2015.7385302.

  • Lee, K., Frank, S., Sen, P.K., Polese, L.G., Alahmad, M. & Waters, C., (2012, September). Estimation of induction motor equivalent circuit parameters from nameplate data. In 2012 North American Power Symposium (NAPS) (pp. 1–6). IEEE.

  • Lin, W. M., Su, T. J., & Wu, R. C. (2012). Parameter identification of induction machine with a starting n- load low-voltage test. IEEE Transaction on Industrial Electronics, 59(1), 352–360. https://doi.org/10.1109/tie.2011.2148674

    Article  Google Scholar 

  • Maiti, S., Chakraborty, C., Hori, Y., & Ta, M. C. (2008). Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive using reactive power. IEEE Transaction on Industrial Electronics, 55(2), 594–601. https://doi.org/10.1109/tie.2007.911952

    Article  Google Scholar 

  • Nordin, K. B., Novotny, D. W., & Zinger, D. S. (1985). The influence of motor parameter deviations in feedforward field orientation drive systems. IEEE Transaction on Industry Applications, 4, 1009–1015. https://doi.org/10.1109/tia.1985.349571

    Article  Google Scholar 

  • Odhano, S., Pescetto, P., Ali, A. H., Hinkkanen, M., Pellegrino, G., & Bojoi, R. (2019). Parameter identification and self commissioning in AC motor drives: A technology status review. IEEE Transaction on Power Electronics. https://doi.org/10.1109/tpel.2018.2856589

    Article  Google Scholar 

  • Reed, D. M., Hofmann, H. F., & Sun, J. (2016). Offline identification of induction machine parameters with core loss estimation using stator current locus. IEEE Transaction on Energy Conversion, 31(4), 1549–1558. https://doi.org/10.1109/tec.2016.2601781

    Article  Google Scholar 

  • Ruan, J., & Wang, S. (2015). A prediction error method-based self commissioning scheme for parameter identification if induction motors in sensorless drives. IEEE Transaction on Energy Conversion, 30(1), 384–393. https://doi.org/10.1109/tec.2014.2346198

    Article  Google Scholar 

  • Sdid, M. S. N., & Benbouzid, M. E. H. (2000). HG diagram based rotor parameter identification for induction motors thermal monitoring. IEEE Transaction on Energy Conversions, 15(1), 14–18. https://doi.org/10.1109/60.849110

    Article  Google Scholar 

  • Wlas, M., Krzeminski, Z., & Toliyat, H. A. (2008). Neural-network -based parameter estimations of induction motors. IEEE Transaction on Industrial Electronics, 55(4), 1783–1794. https://doi.org/10.1109/tie.2008.918615

    Article  Google Scholar 

  • Wu, R. C., Tseng, Y. W., & Chen, C. Y. (2018). Estimating parameters of the induction machine by the polynomial regression. Applied Science, 8(7), 1073. https://doi.org/10.3390/app8071073

    Article  Google Scholar 

  • Yang, S., Ding, D., Li, X., Xie, Z., Zhang, X., & Chang, L. (2017). A novel online parameter estimation method for indirect field oriented control induction motor drives. IEEE Transaction on Energy Conversion, 32(4), 1562–1573. https://doi.org/10.1109/tec.2017.2699681

    Article  Google Scholar 

  • Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint asXiv:1212.5701.

  • Zhang, H., Gong, S.J. & Dong, Z.Z., (2013, October). On-line parameter identification of induction motor based on RLS algorithm. International Conference on Electrical Machines and Systems (ICEMS) (pp. 2132–2137).Busan Korea (South). IEEE. http://doi.org/https://doi.org/10.1109/icems.2013.6713208.

Download references

Acknowledgements

The authors are thankful to Mr. Rakesh Das research scholar of the Applied Physics department of CU for helping us to develop the MMU.

Funding

This section is not applicable in this work.

Author information

Authors and Affiliations

Authors

Contributions

This work has been prepared entirely by TB under the supervision of JNB.

Corresponding author

Correspondence to Tista Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, T., Bera, J.N. An Improved Torque Ripple Reduction Controller for Smooth Operation of Induction Motor Drive. J Control Autom Electr Syst 34, 247–264 (2023). https://doi.org/10.1007/s40313-022-00945-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00945-8

Keywords

Navigation