Skip to main content
Log in

A Path-Following Controller for Guiding a Single Robot or a Multi-robot System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

A solution to the problem of path-following by a team of terrestrial mobile robots is proposed in this paper. The proposal, in this case, is a formation controller dealing with three robots navigating in a coordinate way (as a formation). Based on the controller proposed to guide the formation to follow a prescribed path, an extension to the case of path-following with a single terrestrial mobile robot is also proposed. When regarding a formation of mobile robots, the proposed solution consists in applying a path-following controller to the center of mass of the formation, dealt with as a single virtual robot, and trajectory-tracking controllers to the individual robots in the formation. The advantage of such approach is that it allows planning the motion of the desired formation without specifying how each robot should move. The movement is specified for the formation as a whole, using a representation called cluster-space, and the movement of the individual robots is derived from the specification of the formation movement directly, using transformations from the cluster-space to the space of the robots and vice versa. In the sequel, the path-following controller designed for the virtual robot is analyzed in detail, now dealing with the possibility of being also used as a path-following controller applied to a single real robot. Theoretical stability analysis is presented, as well as some experimental results, whose analysis allows claiming that the proposed controller is suitable to guide either a single robot or a multi-robot formation when following a path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008). The entrapment/escorting mission. IEEE Robotics Automation Magazine, 15(1), 22–29. https://doi.org/10.1109/M-RA.2007.914932.

    Article  Google Scholar 

  • Bethke, B., Valenti, M., & How, J. (2008). UAV task assignment. IEEE Robotics Automation Magazine, 15(1), 39–44. https://doi.org/10.1109/M-RA.2007.914931.

    Article  Google Scholar 

  • Brandão, A. S., Rampinelli, V. T. L., Martins, F. N., Sarcinelli-Filho, M., & Carelli, R. (2015). The multilayer control scheme: A strategy to guide n-robots formations with obstacle avoidance. Journal of Control, Automation and Electrical Systems, 26(3), 201–214.

    Article  Google Scholar 

  • Brandão, A. S., & Sarcinelli-Filho, M. (2016). On the guidance of multiple UAV using a centralized formation control scheme and delaunay triangulation. Journal of Intelligent and Robotic Systems, 84(1), 397–413.

    Article  Google Scholar 

  • Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386. https://doi.org/10.1109/TRO.2004.839232.

    Article  Google Scholar 

  • Cashbaugh, J., & Kitts, C. (2018). Vision-based object tracking using an optimally positioned cluster of mobile tracking stations. IEEE Systems Journal, 12(2), 1423–1434.

    Article  Google Scholar 

  • Celeste, W. C., Bastos-Filho, T. F., Sarcinelli-Filho, M., De La Cruz, C., & Carelli, R. (2013). A robust adaptive path-following controller for a robotic wheelchair. Journal of Control, Automation and Electrical Systems, 24(4), 397–408. https://doi.org/10.1007/s40313-013-0052-z.

    Article  Google Scholar 

  • de Wit, C. C., Siciliano, B., & Bastin, G. (1997). Theory of robot control. Springer.

  • Elshenawy Elsefy, A., Mohamed, K., & Harb, H. (2018). Exploration strategies of coordinated multi-robot system: A comparative study. International Journal of Robotics and Automation, 7(1), 48–58. https://doi.org/10.11591/ijra.v7i1.

    Article  Google Scholar 

  • Ha, Q., Yen, L., & Balaguer, C. (2019). Robotic autonomous systems for earthmoving in military applications. Automation in Construction. https://doi.org/10.1016/j.autcon.2019.102934.

    Article  Google Scholar 

  • Hladio, A., Nielsen, C., & Wang, D. (2013). Path following for a class of mechanical systems. IEEE Transactions on Control Systems Technology, 21(6), 2380–2390. https://doi.org/10.1109/TCST.2012.2223470.

    Article  Google Scholar 

  • Kanayama, Y., Kimura, Y., Miyazaki, F., & Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. In Proceedings of the IEEE international conference on robotics and automation (Vol. 1, pp. 384–389). https://doi.org/10.1109/ROBOT.1990.126006.

  • Kitts, C., & Mas, I. (2009). Cluster space specification and control of mobile multirobot systems. IEEE/ASME Transactions on Mechatronics, 14(2), 207–218. https://doi.org/10.1109/TMECH.2009.2013943.

    Article  Google Scholar 

  • Li, W. (2016). Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints. IEEE Transactions on Cybernetics, 46(5), 1242–1248. https://doi.org/10.1109/TCYB.2015.2424257.

    Article  Google Scholar 

  • Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., & Su, C. Y. (2016). Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(6), 740–749. https://doi.org/10.1109/TSMC.2015.2465352.

    Article  Google Scholar 

  • Martins, F. N., Celeste, W., Carelli, R., Sarcinelli-Filho, M., & Bastos-Filho, T. F. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 16(11), 1354–1363. https://doi.org/10.1016/j.conengprac.2008.03.004.

    Article  Google Scholar 

  • Mas, I., Li, S., Acain, J., & Kitts, C. (2009). Entrapment/escorting and patrolling missions in multi-robot cluster space control. In IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009 (pp. 5855 –5861). https://doi.org/10.1109/IROS.2009.5354815

  • Parker, L. E. (2016). Multiple robot systems, 2nd edn., pp. 1335–1384. Springer Handbooks. Springer.

  • Rabelo, M. F. S., Brando, A. S., & Sarcinelli-Filho, M. (2020). Landing a UAV on static or moving platforms using a formation controller. IEEE Systems Journal Early Access. https://doi.org/10.1109/JSYST.2020.2975139.

    Article  Google Scholar 

  • Resende, C. Z., Carelli, R., & Sarcinelli-Filho, M. (2013). A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains. Control Engineering Practice, 21(10), 1302–1309. https://doi.org/10.1016/j.conengprac.2013.05.012.

    Article  Google Scholar 

  • Rizk, Y., Awad, M., & Tunstel, E. (2019). Cooperative heterogeneous multi-robot systems: A survey. ACM Computing Surveys, 52, 1–31. https://doi.org/10.1145/3303848.

    Article  Google Scholar 

  • Sariel, S., Balch, T., & Erdogan, N. (2008). Naval mine countermeasure missions. IEEE Robotics Automation Magazine, 15(1), 45–52. https://doi.org/10.1109/M-RA.2007.914920.

    Article  Google Scholar 

  • Soetanto, D., Lapierre, L., & Pascoal, A. (2003). Adaptive, non-singular path-following control of dynamic wheeled robots. In IEEE conference on decision and control (Vol. 2, pp. 1765 – 1770). https://doi.org/10.1109/CDC.2003.1272868.

  • Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A linear matrix inequality approach. Wiley.

  • Tokekar, P., Vander Hook, J., Mulla, D., & Isler, V. (2016). Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Transactions on Robotics, 32(6), 1498–1511.

    Article  Google Scholar 

  • Villa, D. K. D., Brandão, A. S., & Sarcinelli-Filho, M. (2020). A survey on load transportation using multirotor UAVs. Journal of Intelligent and Robotic Systems, 98(2), 267–296. https://doi.org/10.1007/s10846-019-01088-w.

    Article  Google Scholar 

  • Yamashita, A., Arai, T., Ota, J., & Asama, H. (2003). Motion planning of multiple mobile robots for cooperative manipulation and transportation. IEEE Transactions on Robotics and Automation, 19(2), 223–237. https://doi.org/10.1109/TRA.2003.809592.

    Article  Google Scholar 

  • Zanetti Resende, C., Carelli, R., Bastos-Filho, T., & Sarcinelli-Filho, M. (2013). A new positioning and path following controller for unicycle mobile robots. In 16th International conference on advanced robotics (ICAR) (pp. 1–6) https://doi.org/10.1109/ICAR.2013.6766583.

  • Zanetti Resende, C., Carelli, R., Sarcinelli-Filho, M. (2014). Coordinated path-following for multi-robot systems using the cluster space framework approach. In 12th IEEE international conference on industrial informatics (INDIN) (pp. 332–337). https://doi.org/10.1109/INDIN.2014.6945534.

Download references

Acknowledgements

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), an agency of the Brazilian Ministry of Science, Technology, Innovations and Communications that supports scientific and technological development, and FAPES (Fundao de Amparo Pesquisa e Inovao do Esprito Santo), an agency of the State of Esprito Santo, Brazil, that supports scientific and technological development, for the financial support to this work. They also thank the Federal Institute of Espírito Santo, the Federal University of Espírito Santo and the Institute of Automatics of the National University of San Juan, Argentine, for supporting the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Sarcinelli-Filho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resende, C.Z., Carelli, R. & Sarcinelli-Filho, M. A Path-Following Controller for Guiding a Single Robot or a Multi-robot System. J Control Autom Electr Syst 32, 895–909 (2021). https://doi.org/10.1007/s40313-021-00725-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00725-w

Keywords

Navigation