Skip to main content
Log in

A Robust Adaptive Path-Following Controller for a Robotic Wheelchair

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This article proposes a path-following controller for robotic wheelchairs (RW) used to transport people suffering of severe muscular diseases, taking into account velocity bounds and dynamic effects. A parameterized dynamic model, which considers the person on board the RW, is used. The model parameters normally change, generating structured uncertainties. Moreover, the dynamic model is proposed under some simplifications, introducing unstructured uncertainties. Finally, time-varying dynamics, caused basically by user movements, are also considered. Hence, the dynamic controller proposed is adaptive and robust. Experimental and simulation results show the effectiveness and the good performance of the proposed control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aström, K. J., & Wittenmark, B. (2008). Adaptive control (2nd ed., Vol. 1). New York: Dover Publication.

    Google Scholar 

  • Bessa, W. M., & BarrOto, R. S. S. (2010). Adaptive fuzzy sliding mode control of uncertain nonlinear systems. SBA–Controle & Automação, 21(2), 117–126.

    Google Scholar 

  • Coelho, P., & Nunes, U. (2005). Path-following control of mobile robots in presence of uncertainties. IEEE Transactions on Robotics, 21(2), 252–261.

    Article  Google Scholar 

  • Cruz, C. D. L., & Carelli, R. (2006). Dynamic modeling and centralized formation control of mobile robots. In 32nd Annual conference of the IEEE industrial electronics society IECON (pp. 3880–3885). Paris

  • Cruz, C. D. L., Carelli, R., & Bastos, T. F. (2011a). Adaptive control law for robotic wheelchairs. IFAC–Control Engineering Practice, 19(2), 113–125.

    Article  Google Scholar 

  • Cruz, C. D. L., Celeste, W. C., & Bastos, T. F. (2011b). A robust navigation system for robotic wheelchairs. IFAC–Control Engineering Practice, 19(6), 575–590.

    Article  Google Scholar 

  • de Wit, C. C., Siciliano, B., & Bastin, G. (1997). Theory of robot control. London: Springer-Verlag.

    Google Scholar 

  • Ding, D., & Cooper, R. A. (2005). Electric-powered wheelchairs: A review of current technology and insight into the future directions. IEEE Transactions on Neural Networks, 1(1), 22–34.

    Google Scholar 

  • Do, K. D., Jiang, Z. P., & Pan, J. (2004). Simultaneous tracking and stabilization of mobile robots: An adaptive approach. IEEE Transactions on Automatic Control, 49(7), 1147–1151.

    Article  MathSciNet  Google Scholar 

  • dos Santos, F. P. N. (2011). Robotizatpo de uma cadeira de rodas. Master’s thesis, Universidade Federal do Espírito Santo, Vitória. Brasil: ES.

  • Fierro, R., & Lewis, F. L. (1997). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. Journal of Robotics Systems, 14(3), 149–163.

    Article  MATH  Google Scholar 

  • Fioretti, S., Leo, T., & Longhi, S. (2000). A navigation system for increasing the autonomy and the security of powered wheelchairs. IEEE Transactions on Rehabilitation Engineering, 8(4), 490–498.

    Google Scholar 

  • Isidori, A. (1989). Nonlinear control systems (1st ed., Vol. 1). Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Jordan M. A., & Bustamante J. L. (2008). A totally stable adaptive control for path tracking of time-varying autonomous underwater vehicles. Proceedings of 17th IFAC World Congress, 17(1), 15985–15990.

  • Kim, C. H., Jung, J. H., & Kim, B. K. (2004). Design of intelligent wheelchair for the motor disabled (pp. 299–310). Daejeon: Proceedings of the Eighth International Conference on Rehabilitation Robotics.

  • Martins, F. N., Celeste, W. C., Carelli, R., Filho, M. S., & Filho, T. F. B. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. IFAC–Control Engineering Practice, 16(11), 1354–1363.

    Article  Google Scholar 

  • Parikh, S. P., Grassi, V., Kumar, V., & Okamoto, J. (2007). Integrating human inputs with autonomous behaviors on an intelligent wheelchair platform. IEEE Transactions on Intelligent Systems, 22(2), 33–41.

    Google Scholar 

  • Patre, P. M., MacKunis, W., Makkar, C., & Dixon, W. E. (2008). Asymptotic tracking for systems with structured and unstructured uncertainties. IEEE Transactions on Control Systems Technology, 16(2), 373–379.

    Article  Google Scholar 

  • Sastry, S., & Bodson, M. (1989). Adaptive control: Stability, convergence, and robustness (Vol. 1). Portland, OR: Dover Publications.

    MATH  Google Scholar 

  • Slotine, J.-J., & Li, W. (1988). Adaptive manipulator control: A case study. IEEE Transactions on Automatic Control, 33(11), 995–1003.

    Article  MATH  Google Scholar 

  • Soetanto, D., Lapierre, L., & Pascoal, A. (2003). Adaptive, non-singular path-following control of dynamic wheeled robots. Proceedings of the 42nd IEEE conference on decision and control. Maui, Hawaii, USA.

  • Strang, G. (1988). Linear algebra and its applications (3rd ed., Vol. 1). New York: Thomson Learning, Inc.

    Google Scholar 

  • Tanner, H. G., & Kyriakopoulos, K. J. (2003). Backstepping for nonsmooth systems. Automatica, 39(7), 1259–1265.

    Google Scholar 

  • Vargas, J. A. R., & Hemerly, E. M. (2008). Observação adaptativa neural com convergência assintótica na presença de parâmetros variantes no tempo e distubios. SBA–Controle & Automação, 19(1), 18–29.

Download references

Acknowledgments

The authors thank CAPES (Brazil) and SPU (Argentina) for funding the partnership between Federal University of Espirito Santo/Brazil and National University of San Juan/Argentina (Project 018/04 CAPG-BA), and FAPES (Brazil) for financing part of this study (Process: 39385183/2007). Mr. Celeste also thanks CNPq, a Brazilian institution that supports scientific and technical development, for the scholarship he received for his Ph. D. research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanderley Cardoso Celeste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celeste, W.C., Bastos-Filho, T.F., Sarcinelli-Filho, M. et al. A Robust Adaptive Path-Following Controller for a Robotic Wheelchair. J Control Autom Electr Syst 24, 397–408 (2013). https://doi.org/10.1007/s40313-013-0052-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0052-z

Keywords

Navigation