Skip to main content
Log in

Comparing MIMO Process Control Methods on a Pilot Plant

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work presents a comparison among three different control strategies for multivariable processes. The techniques were implemented in a pilot plant with coupled control loops, where all steps used to design the controllers were described allowing to establish a trade-off between algorithm complexity, information needed from the process and achieved performance. Two data-driven control techniques are used: multivariable ultimate point method to design a decentralized PID controller and virtual reference feedback tuning to design a centralized PID controller. A mathematical model of the process is obtained and used to design a model-based generalized predictive controller. Experimental results allow us to evaluate the performance achieved for each method, as well as to infer on their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For PID controller parameters see Campestrini et al. (2009).

References

  • Al-Naumani, Y., & Rossiter, J. (2015). Distributed MPC for upstream oil & gas fields—A practical view. In 9th IFAC symposium on advanced control of chemical processes ADCHEM 2015 (Vol. 48, pp. 325–330).

  • Åstrom, K. J., & Hägglund, T. (1995). PID controllers: Theory, design and tuning (Vol. 2). NC: Isa Research Triangle Park.

    Google Scholar 

  • Åström, K. J., & Wittenmark, B. (1997). Computer-controlled systems: Theory and design. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Bi, Q., Wang, Q. G., & Hang, C. C. (1997). Relay-based estimation of multiple points on process frequency response. Automatica, 33(9), 1753–1757.

    Article  MathSciNet  Google Scholar 

  • Bodson, M., & Groszkiewicz, J. E. (1997). Multivariable adaptive algorithms for reconfigurable flight control. IEEE Transactions on Control Systems Technology, 5(2), 217–229.

    Article  Google Scholar 

  • Camacho, E. F., & Bordons Alba, C. (2007). Model predictive control. Advanced textbooks in control and signal processing. London: Springer.

    Google Scholar 

  • Campestrini, L., Barros, P., & Bazanella, A. (2006). Auto-tuning of PID controllers for MIMO processes by relay feedback. In IFAC symposium on advance control of chemical processes (pp. 451–456). Gramado, RS, Brazil.

  • Campestrini, L., Stevanatto Filho, L. C., & Bazanella, A. S. (2009). Tuning of multivariable decentralized controllers through the ultimate-point method. IEEE Transactions on Control Systems Technology, 17(6), 1270–1281.

    Article  Google Scholar 

  • Campestrini, L., Eckhard, D., Chía, L. A., & Boeira, E. (2016). Unbiased MIMO VRFT with application to process control. Journal of Process Control, 39, 35–49.

    Article  Google Scholar 

  • Campi, M., Lecchini, A., & Savaresi, S. (2002). Virtual reference feedback tuning: A direct method for the design of feedback controllers. Automatica, 38, 1337–1346.

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke, D. W., Mohtadi, C., & Tuffs, P. S. (1987). Generalized predictive control—Part I. The basic algorithm. Automatica, 23(2), 137–148.

    Article  MATH  Google Scholar 

  • Dumont, G. A. (1986). Application of advanced control methods in the pulp and paper industry—A survey. Automatica, 22(2), 143–153.

    Article  Google Scholar 

  • García, C., Prett, D., & Morari, M. (1989). Model predictive control: Theory and practice—A survey. Automatica, 25(3), 335–348.

    Article  MATH  Google Scholar 

  • Hjalmarsson, H., Gevers, M., Gunnarsson, S., & Lequin, O. (1998). Iterative feedback tuning: Theory and applications. IEEE Control Systems Magazine, 18(4), 26–41.

    Article  Google Scholar 

  • Jin, Q., Hao, F., & Wang, Q. (2013). A multivariable IMC-PID method for non-square large time delay systems using npso algorithm. Journal of Process Control, 23(5), 649–663.

    Article  Google Scholar 

  • Karimi, A., Mišković, L., & Bonvin, D. (2004). Iterative correlation-based controller tuning. International Journal of Adaptive Control and Signal Processing, 18, 645–664.

    Article  MATH  Google Scholar 

  • Krstic, M., Kanellakopoulos, I., & Kokotovic, P. V. (1995). Nonlinear and adaptive control design. Hoboken: Wiley.

    MATH  Google Scholar 

  • Loh, A. P., Hang, C. C., Quek, C. K., & Vasnani, V. U. (1993). Autotuning of multiloop proportional-integral controllers using relay feedback. Industrial & Engineering Chemistry Research, 32(6), 1102–1107.

    Article  Google Scholar 

  • Luyben, W. L. (1986). Simple method for tuning SISO controllers in multivariable systems. Industrial & Engineering Chemistry Process Design and Development, 25, 654–660.

    Article  Google Scholar 

  • Maciejowski, J. M. (1989). Multivariable feedback design. Electronic systems engineering series. Wokingham: Addison-Wesley.

    MATH  Google Scholar 

  • Mehta, U. (2013). Fast Fourier transform for estimating process frequency response. In 2013 IEEE 8th conference on industrial electronics and applications (ICIEA), IEEE, (pp. 7–10).

  • Palmor, Z. J., Halevi, Y., & Krasney, N. (1995). Automatic tuning of decentralized pid controllers for TITO processes. Automatica, 31(7), 1001–1010.

    Article  MATH  Google Scholar 

  • Rojas, J., Morilla, F., & Vilanova, R. (2012). Multivariable PI control for a boiler plant benchmark using the virtual reference feedback tuning. In 2nd IFAC conference on advances in PID control, (pp. 376–381).

  • Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control: Analysis and design. Hoboken: Wiley.

    MATH  Google Scholar 

  • Söderström, T., & Stoica, P. (1988). System identification. Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  • Vu, T. N. L., & Lee, M. (2010). Independent design of multi-loop PI/PID controllers for interacting multivariable processes. Journal of Process Control, 20(8), 922–933.

    Article  Google Scholar 

  • Wang, Q. G., Bi, Q., & Zou, B. (1997). Use of FFT in relay feedback systems. Electronics Letters, 33(12), 1099–1100.

    Article  Google Scholar 

  • Yubai, K., Usami, H., & Hirai, J. (2009). Correlation-based direct tuning of MIMO controllers by least-squares and its application to tension-and-speed control apparatus. In ICCAS-SICE, IEEE (pp. 931–936), Fukuoka, Japan.

  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 220–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Campestrini.

Additional information

E. Boeira, V. Bordignon, D. Eckhard and L. Campestrini are supported by CNPq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeira, E., Bordignon, V., Eckhard, D. et al. Comparing MIMO Process Control Methods on a Pilot Plant. J Control Autom Electr Syst 29, 411–425 (2018). https://doi.org/10.1007/s40313-018-0387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0387-6

Keywords

Navigation