Skip to main content

Advertisement

Log in

DSCC-MMC STATCOM Main Circuit Parameters Design Considering Positive and Negative Sequence Compensation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The double-star chopper cell modular multilevel converter (DSCC-MMC) has been employed in several applications as HVDC, energy storage, renewable energy, electrical drives and STATCOMs. Generally, the DSCC-MMC main circuit parameter design presented in literature considers balanced currents flowing through the converter. Nevertheless, in STATCOM application, the converter can compensate negative sequence components and unbalanced currents flow through the DSCC-MMC, resulting in different stresses in the converter phases. Therefore, this work presents a detailed design methodology of the DSCC-MMC main circuit parameters, considering both positive and negative sequence current compensations. The dc-link voltage, number of submodules, power semiconductor thermal stresses, submodule capacitance and arm inductances are designed. Expressions for the energy storage requirements are derived when negative sequence is compensated. A case study considering a 15-MVA STATCOM is presented, and simulation results validate the proposed design methodology. Finally, the converter power losses and thermal stresses in the power semiconductors are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For example, when \(f_c\) = 210 Hz and \(f_n\) = 60 Hz, \(f'_c/f'_n\) = 7/2. Therefore, \(f'_c = 7\) and \(f'_n = 2\). Therefore, \(1/f_{ma} = 2/f_n\).

References

  • Akagi, H. (2011). Classification, terminology, and application of the modular multilevel cascade converter (MMCC). IEEE Transactions on Power Electronics, 26(11), 3119–3130.

    Article  Google Scholar 

  • Akagi, H., Watanabe, E. H., & Aredes, M. (2007). The instantaneous power theory. Hoboken: Wiley-IEEE Press.

    Book  Google Scholar 

  • Behrouzian, E., & Bongiorno, M. (2017). Investigation of negative-sequence injection capability of cascaded H-bridge converters in star and delta configuration. IEEE Transactions on Power Electronics, 32(2), 1675–1683.

    Article  Google Scholar 

  • Du, S., & Liu, J. (2013). A study on DC voltage control for chopper-cell-based modular multilevel converters in d-STATCOM application. IEEE Transactions on Power Delivery, 28(4), 2030–2038.

    Article  Google Scholar 

  • Fujii, K., Schwarzer, U., & Doncker, R. W. D. (2005). Comparison of hard-switched multi-level inverter topologies for statcom by loss-implemented simulation and cost estimation. In 36th PESC (pp. 340–346).

  • Gemmell, B., Dorn, J., Retzmann, D., & Soerangr, D. (2008). Prospects of multilevel vsc technologies for power transmission. In Transmission and distribution conference and exposition (pp. 1–16).

  • Hagiwara, M., & Akagi, H. (2009). Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Transactions on Power Electronics, 24(7), 1737–1746.

    Article  Google Scholar 

  • Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L., & Nee, H. P. (2013). Dynamic analysis of modular multilevel converters. IEEE Transactions on Industrial Electronics, 60(7), 2526–2537.

    Article  Google Scholar 

  • Ilves, K., Antonopoulos, A., Norrga, S., & Nee, H. P. (2012). Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters. IEEE Transactions on Power Electronics, 27(1), 57–68.

    Article  Google Scholar 

  • Ilves, K., Harnefors, L., Norrga, S., & Nee, H. P. (2015). Analysis and operation of modular multilevel converters with phase-shifted carrier pwm. IEEE Transactions on Power Electronics, 30(1), 268–283.

    Article  Google Scholar 

  • Ilves, K., Norrga, S., Harnefors, L., & Nee, H. P. (2014). On energy storage requirements in modular multilevel converters. IEEE Transactions on Power Electronics, 29(1), 77–88.

    Article  Google Scholar 

  • Mohammadi, H., & Bina, M. T. (2011). A transformerless medium-voltage statcom topology based on extended modular multilevel converters. IEEE Transactions on Power Electronics, 26(5), 1534–1545.

    Article  Google Scholar 

  • Moon, J. W., Kim, C. S., Park, J. W., Kang, D. W., & Kim, J. M. (2013). Circulating current control in MMC under the unbalanced voltage. IEEE Transactions on Power Delivery, 28(3), 1952–1959.

    Article  Google Scholar 

  • Ota, J. I. Y., Shibano, Y., Niimura, N., & Akagi, H. (2015). A phase-shifted-pwm D-STATCOM using a modular multilevel cascade converter (SSBC) part i: Modeling, analysis, and design of current control. IEEE Transactions on Industry Applications, 51(1), 279–288.

    Article  Google Scholar 

  • Pereira, H. A., Domingos, R. M., Xavier, L. S., Cupertino, A. F., Mendes, V. F., & Paulino J. O. S. (2015). Adaptive saturation for a multifunctional three-phase photovoltaic inverter. In 17th European conference on power electronics and applications (pp. 1–10).

  • Sangwongwanich, A., Mathe, L., Teodorescu, R., Lascu, C., & Harnefors, L. (2016). Two-dimension sorting and selection algorithm featuring thermal balancing control for modular multilevel converters. In 18th EPE (pp. 1–10).

  • Sasongko, F., Sekiguchi, K., Oguma, K., Hagiwara, M., & Akagi, H. (2016). Theory and experiment on an optimal carrier frequency of a modular multilevel cascade converter with phase-shifted pwm. IEEE Transactions on Power Electronics, 31(5), 3456–3471.

    Article  Google Scholar 

  • Sharifabadi, K., Harnefors, L., Nee, H., Norrga, S., & Teodorescu, R. (2016). Design, control and application of modular multilevel converters for HVDC transmission systems (pp. 214–216). Hoboken: Wiley.

    Book  Google Scholar 

  • Smirnova, L., Pyrhonen, J., Ma, K., & Blaabjerg, F. (2014). Modular multilevel converter solutions with few sub-modules for wind power application. In 16th EPE (pp. 1–10).

  • Tsolaridis, G., Pereira, H. A., Cupertino, A. F., Teodorescu, R., & Bongiorno, M. (2016). Losses and cost comparison of DS-HB and SD-FB MMC based large utility grade STATCOM. In 16th International conference on environment and electrical engineering (pp. 1–6).

  • Tu, Q., Xu, Z. (2011). Power losses evaluation for modular multilevel converter with junction temperature feedback. In IEEE power and energy society general meeting (pp. 1–7).

  • Tu, Q., Xu, Z., Huang, H., & Zhang, J. (2010). Parameter design principle of the arm inductor in modular multilevel converter based HVDC. In ICPST (pp. 1–6).

  • Xu, C., Dai, K., Chen, X., & Kang, Y. (2016a). Unbalanced pcc voltage regulation with positive- and negative-sequence compensation tactics for MMC-DSTATCOM. IET Power Electronics, 9(15), 2846–2858.

    Article  Google Scholar 

  • Xu, Z., Xiao, H., & Zhang, Z. (2016b). Selection methods of main circuit parameters for modular multilevel converters. IET Renewable Power Generation, 10(6), 788–797.

    Article  Google Scholar 

  • Yepes, A. G., Freijedo, F. D., & Lopez, Doval-Gandoy J. (2011). Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function. IEEE Transactions on Industrial Electronics, 58(11), 5231–5250.

    Article  Google Scholar 

  • Yue, Y., Ma, F., Luo, A., Xu, Q., & Xie, L. (2016). A circulating current suppressing method of MMC based statcom for negative-sequence compensation. In 8th international power electronics and motion control conference (pp. 3566–3572).

Download references

Acknowledgements

The authors would like to thank the Brazilian agencies FAPEMIG, CAPES and CNPq by funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Fagner Cupertino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupertino, A.F., Farias, J.V.M., Pereira, H.A. et al. DSCC-MMC STATCOM Main Circuit Parameters Design Considering Positive and Negative Sequence Compensation. J Control Autom Electr Syst 29, 62–74 (2018). https://doi.org/10.1007/s40313-017-0349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0349-4

Keywords

Navigation