Skip to main content

Control of Multilevel STATCOMs

  • Chapter
  • First Online:
Static Compensators (STATCOMs) in Power Systems

Part of the book series: Power Systems ((POWSYS))

Abstract

Control strategies suitable for multilevel STATCOMs are reviewed in this chapter. First of all, the models are systematically deducted and especial emphasis is given to the dynamic and steady state analysis in order to facilitate the study of the control techniques. Then, these control schemes aimed to achieve the overall compensation objectives are classified in linear and nonlinear approaches. In fact, among the linear alternatives, the Proportional-Resonant (PR) and the Proportional-Integral (PI) controllers are presented as feasible ways to achieve zero steady state error in the stationary and the Synchronous Reference Frame (SRF), respectively. For nonlinear strategies, the input/output linearization control technique is applied. Hysteresis and predictive controllers are also discussed as alternatives to control the STATCOM in the stationary abc or α-β frame. The main features of all the aforementioned control techniques will be presented and because the balanced operation of the modules is not natural, dedicated control strategies in charge of balancing the DC side variables, DC voltages for Voltage Source Converters (VSC) and DC currents for Current Source Converters (CSC) based topologies, are shown as an important part of the control of the multilevel STATCOM. Indeed, the inclusion of these dedicated controllers to balance the operation of the different modules is mandatory for multilevel compensators if high performance overall waveforms are required. In order to illustrate the controllers performance operation, key current and voltage waveforms are shown for linear load compensation, using Cascade H-Bridge (CHB), Neutral Point Clamped (NPC) and Multilevel Current Source Converter (MCSC) based STATCOMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reyes JR, Espinoza JR, Sepulveda CA (2005) Operating region of single-phase UPQCs. In: IEEE 36th power electronics specialists conference, PESC’05, pp 1726–1731, 16 June 2005

    Google Scholar 

  2. Wu B (2006) High power converters and AC drives. Wiley-IEEE Press

    Google Scholar 

  3. Barrena JA, Aurtenechea S, Canales JM, Rodriguez MA, Marroyo L (2005) Design, analysis and comparison of multilevel topologies for DSTATCOM applications. In: 2005 European conference on power electronics and applications

    Google Scholar 

  4. Phillips KP (1972) Current-source converter for AC motor drives. IEEE Trans Ind Appl IA–8(6):679–683

    Google Scholar 

  5. Espinoza JR, Moran LA, Guzman JI (2005) Multi-level three-phase current source inverter based AC drive for high performance applications. In: IEEE 36th power electronics specialists conference, 2005, PESC’05, pp 2553–2559, 16 June 2005

    Google Scholar 

  6. Xu D, Zargari NR, Wu B, Wiseman J, Yuwen B, Rizzo S (2005) A medium voltage AC drive with parallel current source inverters for high power applications. In: IEEE 36th power electronics specialists conference, 2005, PESC’05, pp 2277–2283, 16 June 2005

    Google Scholar 

  7. Aguirre MP, Calvino L, Valla MI (2013) Multilevel current-source inverter with FPGA control. IEEE Trans Ind Electron 60(1):3–10

    Google Scholar 

  8. Melin PE, Espinoza JR, Zargari NR, Sanchez MA, Guzman JI (2006) Modeling issues in three-phase current source rectifiers that use damping resistors. In: 2006 IEEE international symposium on industrial electronics, vol 2, pp 1247–1252, 9–13 July 2006

    Google Scholar 

  9. Espinoza JR, Joos G, Perez M, Moran T (2000) Operating region in active-front-end voltage/current source rectifiers. In: Proceedings of the 2000 IEEE international symposium on industrial electronics, 2000, ISIE 2000, vol 2, pp 459–464

    Google Scholar 

  10. Espinoza JE, Espinoza JR, Moran LA (2005) A systematic controller-design approach for neutral-point-clamped three-level inverters. IEEE Trans Ind Electron 52(6):1589–1599

    Google Scholar 

  11. Mazuela M, Baraia I, Alvarez S, Atutxa I, Madariaga D (2013) Comprehensive analysis of voltage balancing techniques for 5L-NPC converters. In: 2013 15th European conference on power electronics and applications (EPE), pp 1–10, 2–6 Sept 2013

    Google Scholar 

  12. Rubilar IA, Espinoza JR, Munoz JA, Moran LA (2007) DC link voltage unbalance control in three-phase UPQCs based on NPC topologies. In: 42nd IAS annual meeting on industry applications conference. Conference record of the 2007 IEEE, pp 597–602, 23–27 Sept 2007

    Google Scholar 

  13. Yue W, Ning L, Su L, Wulong C, Wanjun L, Zhao’an W (2014) Research on DC capacitor voltage self-balancing space vector modulation strategy of five-level NPC converter. In: 2014 twenty-ninth annual IEEE applied power electronics conference and exposition (APEC), pp 2694–2699, 16–20 Mar 2014

    Google Scholar 

  14. Sanz I, Bueno EJ, Rodriguez FJ, Moranchel M, Mayor A (2013) Modulation and balancing methods for a NPC converter connected to the grid in a medium voltage application: a STATCOM system. In: 39th annual conference of the IEEE industrial electronics society, IECON 2013, pp 1043–1048, 10–13 Nov 2013

    Google Scholar 

  15. Saeedifard M, Nikkhajoei H, Iravani R (2007) A space vector modulated STATCOM based on a three-level neutral point clamped converter. IEEE Trans Power Deliv 22(2):1029–1039

    Google Scholar 

  16. Chivite-Zabalza J, Izurza-Moreno P, Madariaga D, Calvo G, Rodríguez MA (2013) Voltage balancing control in 3-level neutral-point clamped inverters using triangular carrier PWM modulation for FACTS applications. IEEE Trans Power Electron 28(10):4473–4484

    Google Scholar 

  17. Hasegawa K, Akagi H (2011) A new DC-voltage-balancing circuit including a single coupled inductor for a five-level diode clamped PWM inverter. IEEE Trans Ind Appl 47(2):841–852

    Article  Google Scholar 

  18. Umbria F, Gordillo F, Salas F, Vázquez S (2010) Voltages balance control in three phase three-level NPC rectifiers. In: 2010 IEEE international symposium on industrial electronics (ISIE), pp 3018–3023, 4–7 July 2010

    Google Scholar 

  19. Hotait HA, Massoud AM, Finney SJ et al (2010) Capacitor voltage balancing using redundant states of space vector modulation for five-level diode clamped inverters. IEEE Trans Power Electron 3(2):292–313

    Article  Google Scholar 

  20. Weishaupt CA, Morán LA, Espinoza JR, Dixon JW, Joos G (2010) A reactive power compensator topology based on multilevel single-phase NPC converters. In: 2010 IEEE international conference on industrial technology (ICIT), pp 1339–1344, 14–17 Mar 2010

    Google Scholar 

  21. Melin PE, Espinoza JR, Munoz JA, Baier CR, Espinosa EE (2010) Concepts of decoupled control for a shunt active filter based on multilevel current source converters. In: 2010 IEEE international symposium on industrial electronics (ISIE), pp 742–747, 4–7 July 2010

    Google Scholar 

  22. Li YW (2009) Control and resonance damping of voltage-source and current-source converters with LC filters. IEEE Trans Ind Electron 56(5):1511–1521

    Google Scholar 

  23. Ye Y, Kazerani M, Quintana VH (2005) Current-source converter based STATCOM: modeling and control. IEEE Trans Power Delivery 20(2):795–800

    Google Scholar 

  24. Akagi H, Watanabe EH, Aredes M (2007) Instantaneous power theory and applications to power conditioning. Wiley-IEEE Press

    Google Scholar 

  25. Ortiz A, Aredes M, Rolim LGB, Bueno E, Rodriguez P (2008) A new current control for the STATCOM based on secondary order generalized integrators. In: Power electronics specialists conference, 2008, PESC 2008, IEEE, pp 1378–1383, 15–19 June 2008

    Google Scholar 

  26. Gonzalez-Espin F, Figueres E, Garcera G (2012) An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Trans Ind Electron 59(6):2718–2731

    Google Scholar 

  27. Skogestad S, Postlethwaite I (2005) Multivariable feedback control analysis and design. Wiley, New York

    Google Scholar 

  28. Levine W (2010) The control handbook. CRC Press

    Google Scholar 

  29. Sprenger M, Alvarez R, Bernet S (2012) Direct dead-time control-a novel dc-link neutral-point balancing method for the three-level neutral-point-clamped voltage source inverter. In: Energy conversion congress and exposition (ECCE), 2012 IEEE, pp 1157–1163, 15–20 Sept 2012

    Google Scholar 

  30. De Alvarenga MB, Pomilio JA (2011) Modulation strategy for minimizing commutations and capacitor voltage balancing in symmetrical cascaded multilevel converters. In: 2011 IEEE international symposium on industrial electronics (ISIE), pp 1875–1880, 27–30 June 2011

    Google Scholar 

  31. Fu X, Wang J, Ji Y (2006) A novel STATCOM based on cascaded three-phases voltage source inverter. In: IECON 2006—32nd annual conference on IEEE industrial electronics, pp 2174–2179, 6–10 Nov 2006

    Google Scholar 

  32. Li Y, Wu B (2008) A novel DC voltage detection technique in the CHB inverter-based STATCOM. IEEE Trans Power Delivery 23(3):1613–1619

    Google Scholar 

  33. Mane JJ, Muley SP, Aware MV (2012) Performance of 5-level NPC inverter with multi-multicarrier multi-modulation technique. In: 2012 IEEE international conference on power electronics, drives and energy systems (PEDES), pp 1–5, 16–19 Dec 2012

    Google Scholar 

  34. Yang H, Luo H, Sun P, Li C, Li W, He X (2014) Comprehensive analysis on carrier-based PWM modulations for advanced composited clamping five-level converter. In: Applied power electronics conference and exposition (APEC), pp 2338–2343

    Google Scholar 

  35. Ogata K (2004) System dynamics. Pearson Prentice Hall, New Jersey

    Google Scholar 

  36. Sekoguchi M, Konishi H, Goto M, Yokoyama A, Lu Q (2002) Nonlinear optimal control applied to STATCOM for power system stabilization. In: Transmission and distribution conference and exhibition 2002: Asia Pacific, vol 1. IEEE/PES, pp 342–347, 6–10 Oct 2002

    Google Scholar 

  37. Bilgin HF, Ermis M (2010) Design and implementation of a current-source converter for use in industry applications of D-STATCOM. IEEE Trans Power Electron 25(8):1943–1957

    Google Scholar 

  38. Melin PE, Espinoza JR, Baier CR, Guzman JI, Espinosa EE (2011) Unified power quality conditioner based on current source converters for harmonic mitigation using a decoupled control strategy. In: IECON 2011—37th annual conference on IEEE industrial electronics society, pp 4152–4157, 7–10 Nov 2011

    Google Scholar 

  39. Rebeiro RS, Uddin MN (2012) Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive. IEEE Trans Ind Appl 48(1):12–19

    Google Scholar 

  40. Zare F, Ledwich G (2002) A hysteresis current control for single-phase multilevel voltage source inverters: PLD implementation. IEEE Trans Power Electron 17(5):731–738

    Google Scholar 

  41. Gupta R, Ghosh A, Joshi A (2006) Cascaded multilevel control of DSTATCOM using multiband hysteresis modulation. In: IEEE power engineering society general meeting

    Google Scholar 

  42. Shukla A, Ghosh A, Joshi A (2011) Hysteresis modulation of multilevel inverters. IEEE Trans Power Electron 26(5):1396–1409

    Google Scholar 

  43. Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press

    Google Scholar 

  44. Thielemans S, Vyncke TJ, Jacxsens M, Melkebeek JA (2011) FPGA implementation of online finite-set model based predictive control for power electronics. 2011 Workshop on predictive control of electrical drives and power electronics (PRECEDE), pp 63–69, 14–15 Oct 2011

    Google Scholar 

  45. Wilson A, Cortes P, Kouro S, Rodriguez J, Abu-Rub H (2010) Model predictive control for cascaded H-bridge multilevel inverters with even power distribution. In: 2010 IEEE international conference on industrial technology (ICIT), pp 1271–1276, 14–17 Mar 2010

    Google Scholar 

  46. Han J, ZhaoM, Peng D, Tang T (2013) Improved model predictive current control of cascaded H-bridge multilevel converter. In: 2013 IEEE international symposium on industrial electronics (ISIE), pp 1–5, 28–31 May 2013

    Google Scholar 

  47. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838

    Google Scholar 

  48. Tarisciotti L, Zanchetta P, Watson A, Bifaretti S, Clare JC (2014) Modulated model predictive control for a seven-level cascaded H-bridge back-to-back converter. IEEE Trans Ind Electron 61(10):5375–5383

    Google Scholar 

  49. Ramirez RO, Espinoza JR, Villarroel F, Maurelia E, Reyes ME (2014) A novel hybrid finite control set model predictive control scheme with reduced switching. IEEE Trans Ind Electron 61(11):5912–5920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Muñoz, J., Melín, P., Espinoza, J. (2015). Control of Multilevel STATCOMs. In: Shahnia, F., Rajakaruna, S., Ghosh, A. (eds) Static Compensators (STATCOMs) in Power Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-281-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-281-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-280-7

  • Online ISBN: 978-981-287-281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics