Skip to main content
Log in

Observer-Based Predictive Control with One Free Control Move for NCSs with Data Loss

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, an efficient output feedback predictive control synthesis based on a prespecified observer for networked control systems is presented. The process of random packet loss between the controller and the actuator is described as Markov chain, and a missing data compensation strategy is induced to cope with the poor performance caused by fading links. The provided model predictive control algorithm optimizes an infinite-horizon objective and parameterizes the infinite-horizon control moves into a free control move followed by output feedback. Further, the corresponding constraints about recursive feasibility and stochastic stability are given by utilizing the linear matrix inequality technique. A numerical example is given to illustrate the applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bai, J. J., Su, H. Y., Gao, J. F., Sun, T., & Wu, Z. G. (2012). Modeling and stabilization of a wireless network control system with packet loss and time delay. Journal of the Franklin Institute, 349, 2420–2430.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, P., & Qin, L. H. (2015). On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Transactions on Industrial Electronics, 63, 3904–3909.

    Google Scholar 

  • Chen, G., Zhu, H. Q., Yang, C. H., & Hu, C. H. (2012). State feedback control for Lurie networked control systems. Journal of Central South University, 19, 3510–3515.

    Article  Google Scholar 

  • Ding, B. C., & Pin, X. B. (2014). Output feedback predictive control with one free control move for nonlinear systems represented by a Takagiugeno model. IEEE Transactions on Fuzzy systems, 22, 1063–6706.

    Google Scholar 

  • Dritsas, L., & Tzes, A. (2007). Robust output feedback control of networked systems. In IEEE Control Conference (pp. 3939–3945).

  • Dughman, S. S., & Rossiter, J. A. (2015). A survy of guaranteeing feasiblity and stability in MPC during target change. In ScienceDirect (pp. 813–818).

  • Fleming, J. (2015). Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Transactions on Automatic Control, 60, 1087–1092.

    Article  MathSciNet  MATH  Google Scholar 

  • Franze, G., & Tedesco, F. (2014). Networked control systems: a polynomial receding horizon approach. IEEE Transactions on Control of Network Systems, 1, 318–327.

    Article  MathSciNet  Google Scholar 

  • Franze, G., Tedesco, F., & Famularo, D. (2015). Model predictive control for constrained networked systems subject to data losses. Automatica, 54, 272–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Hung, N. T., Ismail, I., Saad, N. B., & Ibrahim, R. (2014). design of multi model Predictive Control for nonlinear process plant. 2014 5th International Conference on intelligent and advanced systems (ICIAS), (pp. 1–6).

  • James, F., Basil, K., & Mark, C. (2013). Regions of attraction and recursive feasibility in robust MPC. In 2013 21st Mediterranean Conference on Control and Automation (MED) (pp. 12–20).

  • Keller, J. Y., Chabir, K., & Sauter, D. (2016). Input reconstruction for networked control systems subject to deception attacks and data losses on control signals. International Journal of Systems Science, 47, 814–820.

    Article  MathSciNet  MATH  Google Scholar 

  • Killian, M., Mayer, B., Schirrer, A., & Kozek, M. (2015). Cooperative fuzzy model predictive control. IEEE Transactions on Fuzzy Systems, 24, 1.

    Google Scholar 

  • Li, H., Chow, M. Y., & Sun, Z. (2009). State feedback stabilisation of networked control systems. IET Control Theory & Applications, 7, 929–940.

  • Mayne, D. Q., Rakovi, S. V., & Findeisen, R. (2006). Robust output feedback model predictive control of constrained linear systems. Automatica, 42, 1217–1222.

    Article  MathSciNet  MATH  Google Scholar 

  • Niu, Y. G., Jia, T. G., Wang, X. Y., & Yang, F. W. (2009). Output feedback control design for NCSs subject to quantization and dropout. Infermation Science, 179, 3804–3813.

    Article  MathSciNet  MATH  Google Scholar 

  • Pin, G., & Parisini, T. (2011). Networked predictive control of uncertain constrained nonlinear systems: recursive feasibility and input-to-state stability analysis. IEEE Transactions on Automatic Control, 56, 72–87.

    Article  MathSciNet  Google Scholar 

  • Ravi, G., Jun-ichi, I., & Kenji, K. (2009). Controlled invariant feasibility–A general approach to enforcing strong feasibility in MPC applied to move-blocking. Automatica, 12, 2869–2875.

    MathSciNet  MATH  Google Scholar 

  • Roy, P. K., Mann, G. K., & Hawlader, B. C. (2005). Fuzzy rule-adaptive model predictive control for a multivariable heating system. Proceedings of 2005 IEEE Conference on Control Applications, CCA 2005, (pp. 260–265).

  • Sun, H., Zhang, Q., & Li, N. (2009). Robust passive control for stochastic networked control systems. In Control and Decision Conference, 2009. CCDC ’09. Chinese (pp. 482–487).

  • Takács G., & Rohal’-Ilkiv, I. (2012). Stability and feasibility of MPC. In Model predictive vibration control (pp. 253–285). London: Springer.

  • Warren, A. L., & Marlin, T. E. (2003). Improved output constraint-handling for MPC with disturbance uncertainty. In Proceedings of the, 2003 American Control Conference (pp. 4573–4578).

  • Yang, R., Liu, G. P., Pen, S., & Thomas, C. (2014). Predictive output feedback control for networked control systems. IEEE Transactions on Industrial Electronics, 61, 512–520.

    Article  Google Scholar 

  • Yue, D., Han, Q. L., & Peng, C. (2004). State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 1, 640–644.

    Article  Google Scholar 

  • Zhang, W. L. (2015). Design and control of a network-based gait rehabilitation system: A cyber-physical system approach (Vol. 5, pp. 83–98). UC Berkeley, Mechanical Engineering.

  • Zhang, L. X., Gao, H. J., & Kaynak, O. (2012). Network-induced constraints in networked control systemsa survey. IEEE Transactions on Industrial Informatics, 9, 403–416.

    Article  Google Scholar 

  • Zhang, W., Tang, Y., Huang, T., & Kurths, J. (2016). Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Transactions on Neural Networks & Learning Systems. 99, 1–12.

  • Zhang, L., Wang, J., Ge, Y., & Wang, B. (2014). Robust distributed model predictive control for uncertain networked control systems. Control Theory Applications, 8, 1843–1851.

    Article  MathSciNet  Google Scholar 

  • Zhao, H., Gao, H., & Chen, T. (2010). Fuzzy constrained predictive control of non-linear systems with packet dropouts. IET Control Theory Applications, 4, 1665–1677.

    Article  MathSciNet  Google Scholar 

  • Zou, Y. Y., James, L., Niu, Y. G., & Li, D. W. (2015). Constrained predictive control synthesis for quantized systems with Markovian data loss. Automatica, 55, 217–225.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Tang.

Appendix. Proof of Theorem 3

Appendix. Proof of Theorem 3

(i) According to (29), \(\hat{x}(k|k)=\hat{x}(k)\), \(e(k|k)=e(k)\), \(\eta (k|k)=\eta (k)\) and the successful transmission at initial time k, then (27) can be described as

$$\begin{aligned} \begin{aligned}&\hat{x}^{T}(k)S_{1}\hat{x}(k)+u^{T}(k)Ru(k)+ \hat{x}^{T}(k+1)M_{1}\hat{x}(k+1)\\&\quad +u^{T}(k)N_{1}u(k)+ e^{T}(k+1)P_{e}(k)e(k+1)\le \gamma (k) \end{aligned} \end{aligned}$$

the error \(e(k+1)=e(k+1|k)=(A_{0}- LC)e(k|k)\), according to the upper bound of e(k), \(e^{T}(k+1)P_{e0}e(k+1) \le \xi (k+1)\) and \( P_{e}(k)=(\mu (k) \gamma (k)P_{e0})/\xi (k+1)\), then the above inequality is equal to

$$\begin{aligned}&\hat{x}^{T}(k)S_{1}\hat{x}(k)+u^{T}(k)Ru(k)+ \hat{x}^{T}(k+1)M_{1}\hat{x}(k+1)\nonumber \\&\quad +u^{T}(k)N_{1}u(k)\le (1-\mu (k))\gamma (k) \end{aligned}$$
(39)

multiplying (39) by \(\gamma ^{-1}\) and substituting \(\gamma M_{1}^{-1}=\bar{M}_{1}\), \(\gamma N_{1}=\bar{N}_{1}^{-1}\), using Schur complement, (29) is obtained.

(ii)Based on the quadratic Lyapunov function defined in (24), the contractiveness conditions (25) can be written as

$$\begin{aligned}&E\left\{ \eta ^{T}(k+i|k)\varPsi ^{T}diag \left\{ M_{\theta (k+i+1|\theta (k+i+1)},P_{e}(k),\right. \right. \nonumber \\&\quad \left. N_{\theta (k+i+1|k)|\theta (k+i|k)}\right\} \varPsi \eta (k+i|k)-\eta ^{T}(k+i|k)\nonumber \\&\quad \left. \times diag\left\{ M_{\theta (k+i|k)},P_{e}(k),M_{\theta (k+i|k)}\right\} \eta (k+i|k)\right\} \nonumber \\&\quad +E\left\{ \eta ^{T}(k+i|k)S\eta (k+i|k)+u^{T}(k+i|k)R\right. \nonumber \\&\quad \left. \times u(k+i|k) \right\} \le 0 \end{aligned}$$
(40)

where

$$\begin{aligned} \varPsi (k)=\begin{bmatrix} {A+ \theta (k) BF}&LC&{(1- \theta (k))\tau B}\\ 0&A-LC&0\\ \theta (k) F&0&{(1- \theta (k))\tau I} \end{bmatrix} \end{aligned}$$
(41)

If \(\theta (k+i|k)=1\), \(E_{\theta (k+i|k)=1}diag\{M_{\theta (k+i+1)}\), \(P_{e}(k)\), \(N_{\theta (k+i+1)}\}\alpha diag\{M_{0}\), \(P_{e}\), \(N_{0}\}+(1-\alpha )diag\{M_{1}\), \(P_{e}\), \(N_{1}\}\), the contractiveness condition is satisfied if and only if the following inequality holds

$$\begin{aligned}&\begin{aligned}&(a)~~\varPsi (k)_{\theta (k)=1}^{T}diag\left\{ W_{1},U_{1}, T_{1}\right\} \varPsi (k)_{\theta (k)=1}-diag\{M_{1},\\&\quad P_{e}, N_{1}\}+diag\left\{ S_{1}, 0, 0\right\} +[F~~0~~0]^{T}R[F~~0~~0] \le 0 \end{aligned}\\&\begin{aligned}&(b)~~\alpha diag\left\{ M_{0},P_{e},N_{0}\right\} +(1-\alpha )diag\left\{ M_{1},P_{e},N_{1}\right\} \\&\quad \le diag\left\{ W_{1},U_{1},T_{1}\right\} \end{aligned} \end{aligned}$$

Pre- and post-multiplying (a) by diag\(\{\gamma ^{1/2}M_{1}^{-1}\),\(\gamma ^{1/2}P_{e}^{-1}\), \(\gamma ^{1/2}N_{1}^{-1}\}\), also pre- and post-multiplying (b) by \(diag\{W_{1}^{-1}\), \(U_{1}^{-1}\), \(T_{1}^{-1}\}\), substituting \(\gamma \varGamma ^{-1}=\bar{\varGamma }\), where \(\varGamma \) takes \(\{M_{1}\), \(N_{1}\), \(P_{e}\), \(M_{0}\), \(N_{0}\),\(W_{1}\), \(U_{1}\), \(T_{1}\), \(W_{0}\), \(U_{0}\), \(T_{0}\}\) and \(Y_{1}=F \bar{M}_{1}\), according to Schur complement, (30) and (31) are obtained. If \(\theta (k+i|k)=0\), using above similar procedure, (32) and (33) can be derived.

(iii) if (25) and (27) hold at sampling time k, then

$$\begin{aligned}&\begin{aligned}&\eta ^{T}(k+2|k)diag\left\{ M_{\theta (k)}, Pe(k), N_{\theta (k)}\right\} \eta (k+2|k)\\&\quad +\hat{x}^{T}(k+1|k)S_{1}\hat{x}(k+1|k)+u^{T}(k+1|k)Ru(k+1|k)\\&\quad \le \hat{x}^{T}(k+1|k)M_{\theta (k)}\hat{x}(k+1|k)+e^{T}(k+1|k)Pe(k)\\&\quad \times e(k+1|k)+u^{T}(k|k)N_{\theta (k)}u(k|k) \end{aligned}\\&\begin{aligned}&\hat{x}^{T}(k+1|k)M_{\theta (k)}\hat{x}(k+1|k)+e^{T}(k+1|k)Pe(k)\\&\quad \times e(k+1|k)+u^{T}(k|k)N_{\theta (k)}u(k|k)\le \digamma (k+1) \end{aligned} \end{aligned}$$

where \(\digamma (k+1)\!=\!\gamma (k)\!-\!\hat{x}^{T}(k|k)S_{1}\hat{x}(k|k)\!-\!u^{T}(k|k)Ru(k|k)\), since \(e(k+1|k)=e(k+1)\) and \(\hat{x}(k+1|k)=\hat{x}(k+1)\). By above two inequalities, the following inequality can be obtained.

$$\begin{aligned} \begin{aligned}&e^{T}(k+2|k)Pe(k)e(k+2|k)\le \digamma (k+1)-\hat{x}^{T}(k+1)S_{1}\\&\quad \times \hat{x}(k+1)-u^{T}(k+1|k)(R+N_{\theta (k)})u(k+1|k)\\&\quad -\hat{x}^{T}(k+2|k)M_{\theta (k)}\hat{x}(k+2|k) \end{aligned} \end{aligned}$$

By \(e(k+2|k)=e(k+2)=(A_{0}-LC)e(k+1)\) and \(\tilde{x}(k+2)=\hat{x}(k+2|k)=(A+\theta (k)B F)\hat{x}(k+1)+ (1-\theta (k)) \tau u(k-1)+LCe(k+1)\). so it has

$$\begin{aligned} \begin{aligned}&e^{T}(k+2)Pe(k)e(k+2)\le \tilde{\xi }(k+2)= \digamma (k+1)\\&\quad -\hat{x}^{T}(k+1)S_{1}\hat{x}(k+1)-u^{T}(k+1|k)(R+N_{\theta (k)})\\&\quad \times u(k+1|k)-\hat{x}^{T}(k+2|k)M_{\theta (k)}\hat{x}(k+2|k) \end{aligned} \end{aligned}$$

where \(\tilde{\xi }(k+2)\) follows the above assumption 1, besides, since \(Pe(k)= \pi (k)P_{e0}\). Then

$$\begin{aligned} \begin{aligned} e^{T}(k+2)P_{e0}e(k+2)\le \tilde{\xi }(k+2)/ \pi (k) \end{aligned} \end{aligned}$$

from above results and Theorem 2, it gets the upper bound of estimation error at time \(k+2\)

$$\begin{aligned} \begin{aligned}&e^{T}(k+2)P_{e0}e(k+2)\le \xi (k+2)\\&\quad =min\left\{ \tilde{\xi }(k+2)/\pi (k);\delta \eta (k+1)\right\} \end{aligned} \end{aligned}$$

For any \(k>1\), with similar analysis, we get \(e^{T}(k+1)P_{e0}e(k+1)\le \xi (k+1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Gong, X. & Tang, X. Observer-Based Predictive Control with One Free Control Move for NCSs with Data Loss. J Control Autom Electr Syst 28, 612–622 (2017). https://doi.org/10.1007/s40313-017-0331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0331-1

Keywords

Navigation