Skip to main content

Advertisement

Log in

A Meteorological–Statistic Model for Short-Term Wind Power Forecasting

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The problem of wind power forecasting is addressed in this work, considering a combination of a numerical weather prediction model (NWP) and statistical models. Brazilian developments on the Regional Atmospheric Modeling System is employed in two different areas in Brazil to simulate forecasts of 72 h ahead of the wind speed, at each 10 min. In one of the areas studied, the wind speed is converted into wind power. Different conversion methods are employed and discussed. Kalman filtering techniques are employed to reduce systematic error of the forecasts, both wind and generation. Each 72-h period of the NWP simulations had a computational time of approximately 60–70 min using indicating that the proposed method can be applied in real time for power system operation. The results obtained are very encouraging for further investigation to achieve more accurate wind power researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Adapted from Landberg (1999)

Fig. 2
Fig. 3
Fig. 4

Source Lima (2016)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahlstrom, M. L., & Zavadil, R. M. (2005). The role of wind forecasting in grid operations and reliability. In Proceedings of IEEE/PES transmission and distribution conference and exhibition: Asia and Pacific, China (pp. 1–5). doi:10.1109/TDC.2005.1547203.

  • DOE-Department of Energy (US). (2008). 20% Wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply DOE office of energy efficiency and renewable energy report. Available at: http://www.ipd.anl.gov/anlpubs/2009/11/65613.pdf. Accessed May 16, 2017.

  • DOE-Department of Energy (US). (2009). Wind power forecasting: State-of-the-art 2009—Decision and Information Sciences Division—Argonne National Laboratory—U.S. Department of Energy. Available at: http://www.ipd.anl.gov/anlpubs/2009/11/65613.pdf. Accessed May 16, 2017.

  • EPE and MME (Empresa de Pesquisas Energéticas e Ministério de Minas Energia). (2015). Plano Decenal de Expansão de Energia 2024. Available at: http://www.epe.gov.br/PDEE/Relat%C3%B3rio%20Final%20do%20PDE%202024.pdf. Accessed May 16, 2017.

  • Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Chatfield, R., Dias, P. S., Artaxo, P., et al. (2009). The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS)—Part 1: Model description and evaluation. Atmospheric Chemistry and Physics, 9(8), 2843–2861. doi:10.5194/acp-9-2843-2009.

    Article  Google Scholar 

  • Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., et al. (2017). The Brazilian developments on the regional atmospheric modeling system (BRAMS 5.2): An integrated environmental model tuned for tropical areas. Geoscientific Model Development. doi:10.5194/gmd-10-189-2017.

  • Galanis, G., & Anadranistakis, M. (2002). A one dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorological Applications, 9, 437–441. doi:10.1017/S1350482702004061.

    Article  Google Scholar 

  • Galanis, G., Louka, P., Katsafados, P., Kallos, G., & Pytharoulis, I. (2006). Applications of Kalman filters based on non-linear functions to numerical weather predictions. Annales Geophysicae, 24, 2451–2460.

    Article  Google Scholar 

  • Giebel, G., Landberg, L., & Nielsen, T. S. (2001). The ZEPHYR project: The next generation prediction system. In Proceedings of the 2001 European wind energy conference, EWEC’01, Copenhagen, Denmark (pp. 777–780).

  • Joensen, A. K., Giebel, G., Landberg, L., Madsen, H., & Nielsen, H. A. (1999). Model output statistics applied to wind power prediction. In Wind energy for the next millennium. European wind energy conference, Nice, France (pp. 1177–1180).

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME. Journal of Basic Engineering, 82(Series D), 35–45.

    Article  Google Scholar 

  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Transactions of the ASME. Journal of Basic Engineering, 83(Series D), 95–108.

    Article  MathSciNet  Google Scholar 

  • Kalnay, E. (2002). Atmospheric modeling, data assimilation and predictability. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Landberg, L. (1994). Short-term predictions of local wind conditions. Ph.D. thesis, RisØ National Laboratory, Denmark.

  • Landberg, L. (1998). Mathematical look at a physical power prediction model. Wind Energy, 1, 23–28.

    Article  Google Scholar 

  • Landberg, L. (1999). Short-term prediction of the power production from wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 80, 207–220. doi:10.1016/S0167-6105(98)00192-5.

    Article  Google Scholar 

  • Lima, J. M. (2016). Modelo Meterorológico-Estocástico para Previsão da Geração de Energia Eólica. Doctoral thesis. Postgraduate Program in Water Resources and Environmental Engineering. Federal University of Paraná. (in Portuguese).

  • Longo, K. M., Freitas, S., Pirre, R., Marécal, V., Rodrigues, L. F., Panetta, J., et al. (2013). The chemistry CATT BRAMS model (CCATT-BRAMS 4.5): A regional atmospheric model system for integrated air quality and weather forecasting and research. Geoscientific Model Development, 6, 1389–1405. doi:10.5194/gmd-6-1389-2013.

    Article  Google Scholar 

  • Moreira, D. S., Freitas, S. R., Bonatti, J. P., Mercado, L. M., Rosário, N. M. É., Longo, K. M., et al. (2013). Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model: applications to numerical weather forecasting and the CO2 budget in South America. Geoscientific Model Development, 6(4), 1243–1259. doi:10.5194/gmd-6-1243-2013.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. doi:10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • NERC-North American Electric Reliability Corporation (USA). (2009). Accommodating high levels of variable generation. Special report. Available at: http://www.nerc.com/docs/pc/ivgtf/IVGTF_Outline_Report_040708.pdf. Accessed May 16, 2017.

  • Pelland, S., Galanis, G., & Kallos, G. (2011). Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Progress in Photovoltaics: Research and Applications. doi:10.1002/pip.1180.

  • Stathopoulos, C., Kaperoni, A., Galanis, G., & Kallos, G. (2013). Wind power prediction base on numerical and statistical models. Journal of Wind Engineering and Industrial Aerodynamics, 112(2013), 25–38. doi:10.1016/j.jweia.2012.09.004.

    Article  Google Scholar 

  • Usaola, J., Ravelo, O., González, G., Soto, F., Dávila, M. C., & Díaz-Guerra, B. (2004). Benefits for wind energy in electricity markets from using short term wind power prediction tools: A simulation study. Wind Engineering, 28(1), 119–127. doi:10.1260/0309524041210838.

    Article  Google Scholar 

  • Wang, X., Guo, P., & Huang, X. (2011). A review of wind power forecasting models. Energy Procedia, 12, 770–778. doi:10.1016/j.egypro.2011.10.103.

    Article  Google Scholar 

  • Wilks, D. (1995). Statistical methods in the atmospheric sciences. Edinburgh: Academic Press.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES Foundation (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, J.M., Guetter, A.K., Freitas, S.R. et al. A Meteorological–Statistic Model for Short-Term Wind Power Forecasting. J Control Autom Electr Syst 28, 679–691 (2017). https://doi.org/10.1007/s40313-017-0329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0329-8

Keywords

Navigation