Skip to main content
Log in

Practically Implementable Model Predictive Controller for a Twin Rotor Multi-Input Multi-Output System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Model Predictive Control (MPC) is a well-established control strategy for the optimal control of constrained multivariable systems. Twin Rotor Multi-Input Multi-Output System (TRMS) is a nonlinear system with significant cross-coupling between the horizontal and vertical axes presenting formidable challenges in modelling and control design. There are instances when a theoretical design may pose problems when it comes to practical implementation, particularly when the design is for nonlinear systems. In this context, this paper presents a practically implementable MPC design for TRMS which has been implemented successfully on a laboratory TRMS test-rig. The presented design is more suited for TRMS because it can handle the control constraints associated with the system through the optimization algorithm underlying the MPC scheme. From the view point of the system, all the control objectives are addressed, viz., stabilizing the system in a coupled condition and making its beam to track a specified reference trajectory or reach desired positions in 2DOF (two degrees of freedom) without violating the control input constraints. The design also incorporates the disturbance rejection requirement. Both simulation and experimental results are presented to show that the results from practical implementation are in accordance with the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmad, S. M., Chipperfield, A. J., & Tokhi, M. O. (2003). Dynamic modelling and linear quadratic Gaussian control of a twin rotor multi-input multi-output system. Proceedings of the Institution of Mechanical Engeers, Part I: Journal of Systems and Control Engineering, 217, 203–227.

    Article  Google Scholar 

  • Butt, S. B., & Aschemann, H. (2015). Multivariable integral sliding mode control of a two degrees of freedom helicopter. IFAC Papers OnLine, 48(1), 802–807.

    Article  Google Scholar 

  • Camacho, E. F., & Bordons, C. (2004). Model predictive control (2nd ed.). London: Springer.

    MATH  Google Scholar 

  • Chemachema, M., & Zeghlache, S. (2014). Output feedback linearization based controller for a helicopter- like twin rotor MIMO system. Journal of Intelligent Robot System, 48(1), 181–190.

    Google Scholar 

  • Juang, J. G., Huang, M. T., & Liu, W. K. (2008). PID control using presearched genetic algorithms for a MIMO system. IEEE Transactions on Systems, Man, and Cybernetics: Part C, 38(5), 716–727.

    Article  Google Scholar 

  • Lu, T-W., & Wen, P. (2007). Time optimal and robust control of twin rotor system. In Proceedings of the IEEE International Conference on Control and Automation, Guangzhou, China, 862-866.

  • Maciejowski, J. M. (2002). Predictive control with constraints. Harlow: Prentice Hall.

    MATH  Google Scholar 

  • Mondal, S., & Mahanta, C. (2012). Adaptive second-order sliding mode controller for a twin rotor multi-input multi-output system. IET Control Theory, 6(14), 2157–2167.

    Article  MathSciNet  Google Scholar 

  • Pandey, V. K., Kar, I., & Mahanta, C. (2016). Control of twin rotor MIMO system using multiple models with second level adaptation. IFAC-Papers OnLine, 49(1), 676–681.

    Article  Google Scholar 

  • Pradhan, J. K., & Ghosh, A. (2013). Design and implementation of decoupled compensation for a twin rotor multiple-input and multiple-output system. IET Control Theory & Applications, 7(2), 282–289.

    Article  MathSciNet  Google Scholar 

  • Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11, 733–764.

    Article  Google Scholar 

  • Rahideh, A., & Shaheed, M. H. (2011). Stable model predictive control for a nonlinear system. Journal of the Franklin Institute, 348, 1983–2004.

    Article  MathSciNet  MATH  Google Scholar 

  • Rahideh, A., & Shaheed, M. H. (2012). Constrained output feedback model predictive control for nonlinear systems. Control Engineering Practice, 20(4), 431–443.

    Article  MATH  Google Scholar 

  • Singh, S., Janardhanan, S., & Mashoq-un-Nabi (2015). Fast terminal sliding mode control for TRMS. In Annual IEEE India Conference (INDICON), pp. 1–5.

  • Tao, C. W., Taur, J. S., Chang, Y. H., & Chang, C. W. (2010). A novel fuzzy sliding and fuzzy integral sliding controller design for the twin rotor multi-input multi-output system. IEEE Transactions on Fuzzy Systems, 18, 1–12.

  • Tao, C. W., Taurb, S., & Chen, Y. C. (2010). Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Sets and Systems, 161(15), 2081–2103.

    Article  MathSciNet  MATH  Google Scholar 

  • Tham, M. T. (1988). Multivariable control: An introduction to decoupling control. In Warwick, K., & Reeds, D. (Eds.) Industrial Digital Control Systems, IEE Control Engineering Series, 37: Peter Peregrinus Networks.

  • Toha, S. F., Julai, S., & Tokhi, M. O. (2012). Ant colony based model prediction of a twin rotor system. Procedia Engineering, 41, 1135–1144.

    Article  Google Scholar 

  • Twin Rotor MIMO System 33-949S (2006). User Manual. East Sussex, UK. :Feedback Instruments Ltd.

  • Wang, L. (2009). Model predictive control system design and implementation using MATLAB. London: Springer.

    MATH  Google Scholar 

  • Wen, P., & Lu, T. W. (2008). Decoupling control of a twin rotor MIMO system using robust deadbeat control technique. IET Control Theory and Applications, 2, 999–1007.

    Article  Google Scholar 

  • Xi, Yu-Geng, Li, De-Wei, & lin, Shu. (2013). Model predictive control—status and challenges. Acta Automatica Sinica, 39(3), 222–236.

    Article  MathSciNet  Google Scholar 

  • Zeglache, Z., Kara, K., & Saigaa, D. (2014). Type-2 fuzzy logic control of a 2-DOF helicopter. Central European Journal of Engineering, 4(3), 303–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashree Raghavan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavan, R., Thomas, S. Practically Implementable Model Predictive Controller for a Twin Rotor Multi-Input Multi-Output System. J Control Autom Electr Syst 28, 358–370 (2017). https://doi.org/10.1007/s40313-017-0311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0311-5

Keywords

Navigation