Skip to main content

Advertisement

Log in

A Dynamic Residential Load Model Based on a Non-homogeneous Poisson Process

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Smart grids treat energy in a much more efficient manner than it is done currently by conventional power systems. One important aspect in the design and analysis of smart grids is to take into account some real characteristics of the power system and its loads. In this context, we propose a dynamic load model for residential applications based on a non-homogeneous Poisson process, whose parameters depend on the electrical characteristics of the loads and their time-varying power profiles. Some of the advantages of this model are its flexibility to represent any specific energetic scenario found in different regions of the globe and the possibility to independently control individual low-voltage loads of the evaluated system by modifying the activation function of the corresponding load model. This last characteristic is fundamental to represent adequately and analyze the behavior of smart grids. To demonstrate the accuracy and effectiveness of the proposed strategy, several load curves were generated with the aid of the proposed model and compared against real measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ANEEL. (2002). Atlas de energia elétrica do Brasil/Agência Nacional de Energia Elétrica. Brasília: ANEEL. http://www2.aneel.gov.br/arquivos/PDF/livro_atlas.pdf.

  • Bakker, V., Bosman, M. G. C., Molderink, A., Hurink, J. L., & Smit, G. J. M. (2010). Demand side load management using a three step optimization methodology. In IEEE international conference on smart grid communications (pp. 431–436).

  • Capovilla, C. E., Casella, I. R. S., Sguarezi Filho, A. J., dos Santos Barros, T. A., & Ruppert Filho, E. (2015). Performance of a direct power control system using coded wireless ofdm power reference transmissions for switched reluctance aerogenerators in a smart grid scenario. IEEE Transactions on Industrial Electronics, 62(1), 52–61.

    Article  Google Scholar 

  • Chen, Y. T. (2002). On the robustness of ljung-box and mcleod-li q tests: A simulation study. Economics Bulletin, 3(17), 1–10.

    Google Scholar 

  • Collin, A. J., Tsagarakis, G., Kiprakis, A. E., & McLaughlin, S. (2014). Development of low-voltage load models for the residential load sector. IEEE Transactions on Power Systems, 29(5), 2180–2188.

    Article  Google Scholar 

  • Darabi, Z., & Ferdowsi, M. (2014). An event-based simulation framework to examine the response of power grid to the charging demand of plug-in hybrid electric vehicles. IEEE Transactions on Industrial Informatics, 10(1), 313–322.

    Article  Google Scholar 

  • Dickert, J., & Schegner, P. (2011). A time series probabilistic synthetic load curve model for residential customers. In IEEE Trondheim PowerTech (pp. 1–6).

  • Ding, Y. M., Hong, S. H., & Li, X. H. (2014). A demand response energy management scheme for industrial facilities in smart grid. IEEE Transactions on Industrial Informatics, 10(4), 2257–2269.

    Article  Google Scholar 

  • Eletrobras. (2009). Pesquisa de posse de equipamentos e habitos de uso - ano base 2005 - PROCEL. Eletrobras.

  • Frost, V., & Melamed, B. (1994). Traffic modeling for telecommunications networks. IEEE Communications Magazine, 32(2), 70–80.

    Article  Google Scholar 

  • Graditi, G., Di Silvestre, M. L., Gallea, R., & Riva Sanseverino, E. (2015). Heuristic-based shiftable loads optimal management in smart micro-grids. IEEE Transactions on Industrial Informatics, 11(1), 271–280.

    Article  Google Scholar 

  • Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., & Hancke, G. (2014). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9(1), 28–42.

    Article  Google Scholar 

  • Jardini, J. A., Tahan, C. M. V., Gouvea, M. R., Ahn, S. U., & Figueiredo, F. M. (2000). Daily load profiles for residential, commercial and industrial low voltage consumers. IEEE Transactions on Power Delivery, 15(1), 375–380.

    Article  Google Scholar 

  • Kuhl, M. E., Sumant, S. G., & Wilson, J. R. (2006). An automated multiresolution procedure for modeling complex arrival processes. INFORMS Journal on Computing, 18(1), 3–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Labeeuw, W., & Deconinck, G. (2013). Residential electrical load model based on mixture model clustering and markov models. IEEE Transactions on Industrial Informatics, 9(3), 1561–1569.

  • Leemis, L. M. (1991). Nonparametric estimation of the cumulative intensity function for a nonhomogeneous poisson process. Management Science, 27(7), 886–900.

    Article  MATH  Google Scholar 

  • Leon-Garcia, A. (2008). Probability, statistics and random processes for electrical engineering (3rd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Lewis, P. A. W., & Shedler, G. S. (1976). Statistical analysis of non-stationary series of events in a data base system. IBM Journal of Research and Development, 20(5), 465–482.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, P. A. W., & Shedler, G. S. (1979). Simulation of nonhomogenous poisson processes by thinning. Naval Research Logistics Quarterly, 26(3), 403–413.

    Article  MathSciNet  MATH  Google Scholar 

  • Logenthiran, T., Srinivasan, D., & Shun, T. Z. (2011). Multi-agent system for demand side management in smart grid. In IEEE international conference on power electronics and drive systems (pp. 424–429).

  • Lu, N., Xie, Y., Huang, Z., Puyleart, F., & Yang, S. (2008). Load component database of household appliances and small office equipment. In IEEE power and energy society general meeting (pp. 1–5).

  • Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid, 1(2), 120–133.

    Article  Google Scholar 

  • Pasupathy, R. (2011). Generating nonhomogenous Poisson processes. In J. J. Cochran, L. A. Cox Jr., P. Keskinocak, J. P. Kharoufeh, & J. C. Smith (Eds.), Wiley Encyclopedia of Operations Research and Management Science (1st ed., p. 6408). New York: Wiley.

  • Richardson, I., Thomson, M., Infield, D., & Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42(10), 1878–1887.

    Article  Google Scholar 

  • Salvador, E., David, R., Lepetitgaland, K., Lopes, F., & dos Santos, G. (2008). The energy efficiency evolution of the water heating process in Brazils residential sector: The procel seal program contribution. In International congress on heating, cooling and buildings (pp. 1–8).

  • Sanches, B. C. S., Batista, A. F. M., & Casella, I. R. S. (2011). Smart grids for the masses: An agent-based system for remote measurement. In IEEE international conference on smart measurements for future grids (pp. 28–33).

  • Shao, S., Pipattanasomporn, M., & Rahman, S. (2013). Development of physical-based demand response-enabled residential load models. IEEE Transactions on Power Systems, 28(2), 607–614.

    Article  Google Scholar 

  • Stoffer, D. S., & Toloi, C. M. C. (1992). A note on the ljung-box-pierce portmanteau statistic with missing data. Statistics & Probability Letters, 13(5), 391–396.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. S. Casella.

Appendix

Appendix

The use of the thinning algorithm to represent the load activation time instants based on a NHPP is justified by the following theorems (Lewis and Shedler 1979):

Theorem 1

Let \(\lambda (t)\) be a positive right-continuous function of \(t \ge 0\). Then \(T_1, T_2, \dots \) are the time to events from a NHPP with \(E[N(t)] = \lambda (t)\), if and only if \( T^*_1 = \varLambda (T_1), T^*_2 = \varLambda (T_2), \dots \) are the time to events in a HPP with rate 1.

Theorem 2

Consider the random variables \(T_1, T_2, \dots , T_n\) representing event times from a NHPP with intensity function \(\lambda (t)\) within the fixed interval \((0, t_0]\). Let \(\lambda (t)\) be an intensity function such that \(0 \le \lambda (t) \le \lambda _u\) for all \(t \in [0, t_0]\). If the ith event time \(T_i\) is independently discarded with probability \(1 - \lambda (t) / \lambda _u\) for \(i = 1, 2, \dots , n\), then the remaining event times form a NHPP with intensity function \(\lambda (t)\) in the interval \((0, t_0]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casella, I.R.S., Sanches, B.C.S., Filho, A.J.S. et al. A Dynamic Residential Load Model Based on a Non-homogeneous Poisson Process. J Control Autom Electr Syst 27, 670–679 (2016). https://doi.org/10.1007/s40313-016-0269-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0269-8

Keywords

Navigation