Skip to main content

Advertisement

Log in

Detection and Classification of Islanding and Nonislanding Events in Distributed Generation Based on Fuzzy Decision Tree

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents a new approach for islanding detection of distributed generation systems (DGs), using the features obtained from a new time-frequency transform with the negative sequence voltage, negative sequence current and the 3-phase voltage and current signals as inputs. The well-known S-transform suffers from high computational complexity, for on-line applications and hence, a new time-frequency transform (frequency filtering S-transform or simply the FFST) similar to it but faster by almost 30 times is proposed here using the frequency sampling and band pass filtering only for neighborhood of significant frequency components, determined from FFT of the power disturbance signals at the DG terminals. Thus using only the important frequency components present in the signal, it results in a significant reduction of computational complexity of the discrete S-transform. A data mining approach using a certainty factor-based fuzzy decision tree is used to yield fuzzy rules with the extracted features from the FFST output to recognize disturbance events like islanding or non-islanding for a variety of operating conditions of both the DGs and the electric power system. The results achieved during testing using existing hybrid distribution systems show that the proposed method is very reliable, and fast even in the presence of large disturbances like faults and capacitor bank switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alaboudy, A. H. K., & Zeineldin, H. H. (2011). Islanding detection for inverter-based DG coupled with frequency-dependent static loads. IEEE Transactions on Power Delivery, 26(2), 1053–1063.

    Article  Google Scholar 

  • Behera, H. S., Dash, P. K., & Biswal, B. (2010). Power quality time series data mining using S-transform and fuzzy expert system. Applied Soft Computing Journal, 10(3), 945–955.

    Article  Google Scholar 

  • Brown, R. A., Lauzon, M., & Frayne, R. (2010). A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous S-transform spectrum nonredundantly. EEE Transactions on Signal Processing, 58(1), 281–290.

    Article  MathSciNet  Google Scholar 

  • Dash, P. K., & Padhee, M. (2012). A hybrid time-frequency approach based fuzzy logic system for power island detection in grid connected distributed generation. International Journal of Electrical Power and Energy Systems, 42(1), 453–464.

  • Estébanez, E. J., Moreno, V. M., Pigazo, A., Liserre, M., & Dell’ Aquila, A. (2011). Performance evaluation of active islanding-detection algorithms in distributed-generation photovoltaic systems: Two inverters case. IEEE Transactions on Industrial Electronics, 58(4), 1185–1193.

    Article  Google Scholar 

  • Freitas, W., Xu, W., Affonso, C. M., & Huang, Z. (2005). Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Transactions on Power Delivery, 20(2), 1315–1324.

    Article  Google Scholar 

  • Ghasemzadeh, H., & Jafari, R. (2011). Physical movement monitoring using body sensor networks: A phonological approach to construct spatial decision trees. IEEE Transactions on Industrial Informatics, 7(1), 66–77.

    Article  Google Scholar 

  • Hullermeier, E., & Vanderlooy, S. (2009). Why fuzzy decision trees are good rankers. IEEE Transactions on Fuzzy Systems, 17(6), 1233–1244.

    Article  Google Scholar 

  • IEEE Standard (2003). Interconnecting distributed resources with electric power systems. IEEE Std. 1547-2003

  • Ishibuchi, H., & Yamamoto, T. (2005). Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems, 13(4), 428–435.

    Article  Google Scholar 

  • Janikow, C. Z. (1998). Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems, Man and Cybernetics, 28(1), 1–14.

    Article  Google Scholar 

  • Karimi, H., Yazdani, A., & Iravani, R. (2008). Negative-sequence current injection for fast islanding detection of a distributed resource unit. IEEE Transactions on Power Electronics, 23(1), 298–307.

    Article  Google Scholar 

  • Katiraei, F., Iravani, M. R., & Lehn, P. W. (2005). Microgrid autonomous during and subsequent to islanding process. Transactions on Power Delivery, 20(1), 248–257.

    Article  Google Scholar 

  • Khemis, A., Shareeh, H., & Bitzkevelci’, E. (2013). A review of islanding detection techniques for distributed generation systems. Renewable and Sustainable Energy Reviews, 28, 483–493.

    Article  Google Scholar 

  • Lidula, N. W. A., & Rajapakse, A. D. (2010). A pattern recognition approach for detecting power islands using transient signals-part I: Design and implementation. IEEE Transactions on Power Delivery, 25(4), 3070–3077.

    Article  Google Scholar 

  • Lidula, N. W. A., & Rajapakse, A. D. (2012). A pattern-recognition approach for detecting power islands using transient signals—part II: Performance evaluation. IEEE Transactions on Power Delivery, 27(3), 1071–1080.

    Article  Google Scholar 

  • Mahat, P., Chen, Z., & Bak-Jensen, B. (2009). A hybrid islanding detection technique using average rate of voltage change and real power shift. IEEE Transactions on Power Delivery, 24(2), 764–771.

    Article  Google Scholar 

  • Merlin, V. L., dos Santos, R. C., Pavani, A. P. G., Coury, D. V., Oleskovicz, M., & de Melo Vieira Jr, J. C. (2014). Artificial neural network based approach for anti-islanding protection of distributed generators. Journal of Control, Automation and Electrical Systems, 1-10.

  • Pigazo, A., Liserre, M., Mastromauro, R. A., Moreno, V. M., & Dell’ Aquila, A. (2009). Wavelet-based islanding detection in grid-connected pv systems. IEEE Transactions on Industrial Electronics, 56(11), 4445–4455.

    Article  Google Scholar 

  • Ray, P. K., Mohanty, S. R., & Kishor, N. (2011). Disturbance detection in grid-connected distributed generation system using wavelet and S-transform. Electric Power Systems Research, 81(3), 805–819.

    Article  Google Scholar 

  • Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21, 660–674.

    Article  MathSciNet  Google Scholar 

  • Samantaray, S. R., El-Arroudi, K., Joós, G., & Kamwa, I. (2010). A fuzzy rule-based approach for islanding detection in distributed generation. IEEE Transactions on Power Delivery, 25(3), 1427–1433.

  • Samantaray, S. R., Babu, B. C., & Dash, P. K. (2011). Probabilistic neural network based islanding detection in distributed generation. Electric Power Components and Systems, 39(3), 191–203.

    Article  Google Scholar 

  • Samantaray, S. R., Samui, A., & Chitti Babu, B. (2011). Time-frequency transform-based islanding detection in distributed generation. IET Renewable Power Generation, 5(6), 431–438.

    Article  Google Scholar 

  • Samui, A., & Samantaray, S. R. (2011). Assessment of ROCPAD relay for islanding detection in distributed generation. IEEE Transactions on Smart Grid, 2(2), 391–398.

    Article  Google Scholar 

  • Samui, A., & Samantaray, S. R. (2013). Wavelet singular entropy-based islanding detection in distributed generation. EEE Transactions on Power Delivery, 28(1), 411–418.

  • Setnes, M., Babuska, R., & Lemke, H. R. (1998). Similarity measures in fuzzy rule base simplification. IEEE Transactions on Systems, Man, and Cybernetics B, 28(3), 376–386.

    Article  Google Scholar 

  • Tsai, H. L. (2010). Insolation-oriented model of photovoltaic module using Matlab/Simulink. Solar Energy, 84(7), 1318–1326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dash.

Appendix

Appendix

The various parameters for the distribution system (Samui and Samantaray 2013), depicted in Fig. 3 are given below:

Sl. no.

Element

Specifications

Specification of elements used in test system 1

1

Utility

115 kV, \(\hbox {V}_{\mathrm{base}} = 115\), f = 60 Hz, \(\hbox {R}_{\mathrm{s}} = 0.377\,\Omega \), \(\hbox {L}_{\mathrm{s}} = 16.58\,\hbox {mH}\), AC voltage source

2

TR1

42 MVA, 115 kV/12.47 kV, \(\hbox {V}_{\mathrm{base}} = 12.47\,\hbox {kV}\), f = 60 Hz, D1Yg

3

TR2 and TR3

7 MVA, 12.47 kV/12.47 kV, \(\hbox {V}_{\mathrm{base}} = 12.47\,\hbox {kV}\), f = 60 Hz, YgD1

4

TR4 and TR5

2 MVA, 12.47 kV/0.575 kV, \(\hbox {V}_{\mathrm{base}} = 12.47\,\hbox {kV}\), f = 60 Hz, D1Yg

5

TR6 and TR7

120 kVA, 12.47 kV/0.44 kV, \(\hbox {V}_{\mathrm{base}} = 12.47\,\hbox {kV}\), f = 60 Hz, D1Yg

6

TR8 and TR9

4 MVA, 12.47 kV/2.4 kV, \(\hbox {V}_{\mathrm{base}} = 12.47\,\hbox {kV}\), f = 60 Hz, D1Yg

7

Total Load

12.47 kV, 60 Hz, 3- phase series RLC Load, a load connected at each bus

8

Transmission Lines

\(\hbox {R}_{0} =0.1153\,\Omega , \hbox {L}_{0} = 1.05 \hbox {mH}, \hbox {C}_{0} = 11.33\times 10^{-9}\,\, \hbox {F,R}_{1} = 0.413\,\Omega , \hbox {L}_{1} = 3.32\,\hbox {mH}, \hbox {C}_{1} = 5.01\times 10^{-9}\, \hbox {F}\).

9

DG5 and DG6

575 V, 60 Hz, 2 MW WIND FARM (cluster of four units of D.F.I.G wind turbines), The parameters for each unit being as follows:[\(\hbox {V}_{\mathrm{s}\_\mathrm{nom}} = 575\,\hbox {V}, \hbox {V}_{\mathrm{r}\_\mathrm{nom}} = 1975\,\hbox {V}, \hbox {R}_{\mathrm{s}} =0.023\) p.u., \(\hbox {L}_{\mathrm{s}} = 0.18\) p.u., \(\hbox {R'}_{\mathrm{r}} =0.016\) p.u., \(\hbox {L'}_{\mathrm{r}} =0.16\) p.u., \(\hbox {L}_{\mathrm{m}} = 2.9\) p.u., Inertia Constant H(s) = 0.685, Friction Factor=0.01, Pair of Poles = 3, Grid-side converter maximum current= 0.8 p.u., Grid-side coupling inductor [ L, R] (p.u.) = [ 0.3 0.003], Nominal DC bus voltage = 1150 V, DC bus capacitor = 10000 \(\upmu \hbox {F}\), Line filter capacitor (var) = 120\(\times 10^{3}\), Nominal mechanical output power 2 MW, DC Bus Voltage[Kp Ki] = [8 400], Grid-side converter current regulator gains [Kp Ki] = [0.83 5], Speed regulator gains[Kp, Ki] = [3 0.6], Grid-side converter current regulator gains [Kp Ki] = [0.6 8], Pitch compensation gains [Kp Ki] = [3 30], Pitch controller gain [Kp] = [150], Maximum pitch angle (deg) = [27], Maximum rate of change of pitch angle (deg/s) = 10 ].

10

DG3 and DG7

440 V, 60 Hz, 2 MVA SOLAR FARM comprising of (35\(\times \)30) Solarex MSX 60 modules, \(\hbox {T}_{\mathrm{ref}}= 298\,\hbox {K}, \hbox {L}_{\mathrm{f}} = 0.5\,\hbox { mH}, \hbox {C}_{\mathrm{f}} =120\upmu \hbox {F}, \hbox {C}_{\mathrm{dc}} = 6,000\,\upmu \hbox {F}, \hbox {Kp} = 0.0035, \hbox {Ki} = 300\) for PI Controller.

11

DG1 and DG2

7 MW, 12.47 kV, 60 Hz synchronous generators, H = 3.6 s, \(\hbox {R}_{\mathrm{s}} = 0.047\)  p.u., \(\hbox {X}_{\mathrm{s}} =0.19\)  p.u., \(\hbox {X}_{\mathrm{d}} = 1.325\)  p.u., \(\hbox {X'}_{\mathrm{d}} = 0.275\)  p.u., \(\hbox {X''}_{\mathrm{d}} = 0.275\)  p.u., \(\hbox {X}_{\mathrm{q}} = 0.568\,\) p.u., \(\hbox {X''}_{\mathrm{q}} = 0.256\,\) p.u., \(\hbox {T'}_{\mathrm{d}0} = 5.495\,\hbox {s}\), \(\hbox {T''}_{\mathrm{d}0} = 0.069\,\hbox {s}\) and \(\hbox {T''}_{\mathrm{q0}} = 0.1\,\hbox {s}\).

12

DG4 and DG8

2.4 kV, 4 MW, 60 Hz, diesel CHP plants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P.K., Barik, S.K. & Patnaik, R.K. Detection and Classification of Islanding and Nonislanding Events in Distributed Generation Based on Fuzzy Decision Tree. J Control Autom Electr Syst 25, 699–719 (2014). https://doi.org/10.1007/s40313-014-0139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0139-1

Keywords

Navigation