Skip to main content
Log in

LMI Relaxations for \(\mathcal{H }_{\infty }\) and \(\mathcal{H }_{2}\) Static Output Feedback of Takagi–Sugeno Continuous-Time Fuzzy Systems

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents new results concerning the problem of static output feedback \(\mathcal{H }_{\infty }\) and \(\mathcal{H }_{2}\) control design for continuous-time Takagi–Sugeno (T–S) fuzzy systems. A fuzzy line integral Lyapunov function with arbitrary polynomial dependence on the premise variables is used to certify closed-loop stability with a bound to the \(\mathcal{H }_{\infty }\) and \(\mathcal{H }_{2}\) norms, allowing the membership functions to vary arbitrarily (i.e., no bounds on the time-derivative of the membership functions are assumed). The static output feedback fuzzy controller is obtained through a two-step procedure: first, a fuzzy state feedback control gain is determined by means of linear matrix inequalities (LMIs). Then, the state feedback gain matrices are used in the LMI conditions of the second step that, if satisfied, provide the fuzzy static output feedback control law. The proposed approach also allows the output feedback gains to have independent and arbitrary polynomial dependence on some specific premise variables, selected by the designer, with great advantages for practical applications. The efficiency of the proposed strategy is demonstrated by means of numerical examples and time domain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For simplicity of notation, the dependence of \( \mu (x(t)) \) on \(x(t)\) is omitted hereafter.

  2. Observe that condition (iii) in Remark 1 always holds in T–S fuzzy systems that, in general, represent nonlinear systems exactly in a subset of \(\mathbb R ^n\) (i.e., the states are constrained).

  3. The index \(a\) of a matrix \(M_a(\mu )\) stands for the degree of the polynomial representation of the matrix. The degree of the system matrices in (3) (degree one) is omitted for simplicity. For more details about the notation, see Sect. 4.

  4. The symbol \(\star \) stands for symmetric blocks.

  5. Note that \(G^{-1}\) is computed in terms of the adjoint matrix of \(G\).

References

  • Andrea, C. Q., Pinto, J. O. P., Assunção, E., Teixeira, M. C. M., & Junior, L. G. (2008). Controle ótimo \({\cal {H}}_{\infty }\) de sistemas não-lineares com modelos fuzzy Takagi-Sugeno. SBA: Controle & Automação, 19(3), 256–269.

    Article  Google Scholar 

  • Arrifano, N. S. D., Oliveira, V. A., & Cossi, L. V. (2003). Synthesis of an LMI-based fuzzy control system with guaranteed cost performance: A piecewise Lyapunov approach, SBA: Controle & Automação, 17(2), 213–225.

    Google Scholar 

  • Arzelier, D., Gryazina, E. N., Peaucelle, D. & Polyak, B. T. (2010). Mixed LMI/Randomized methods for static output feedback control design: Proceedings of the 2010 American Control Conference (pp. 4683–4688). Baltimore, MD, USA.

  • Arzelier, D., Peaucelle, D. & Salhi, S. (2003). Robust static output feedback stabilization for polytopic uncertain systems: Improving the guaranteed performance bound: Proceedings of the 4th IFAC Symposium on Robust Control Design (ROCOND 2003) (pp. 425–430). Milan, Italy.

  • Baranyi, P. (2004). TP model transformation as a way to LMI-based controller design. IEEE Transactions on Industrial Electronics, 51(2), 387–400.

    Article  Google Scholar 

  • Bouarar, T., Guelton, K. & Manamanni, N. (2009). Static output feedback controller design for Takagi-Sugeno systems—A fuzzy Lyapunov LMI approach: Proceedings of the 48th IEEE Conference on Decision and Control—28th Chinese Control Conference (pp. 4150–4155) Shanghai, P. R. China

  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM Studies in Applied Mathematics.

    Book  MATH  Google Scholar 

  • Chen, J., Sun, Y., Min, H., Sun, F., & Zhang, Y. (2012). New results on static output feedback \({\cal {H}}_{\infty }\) control for fuzzy singularly perturbed systems: A linear matrix inequality approach. International Journal of Robust and Nonlinear Control. doi:10.1002/rnc.2787.

  • Green, M., & Limebeer, D. J. N. (1995). Linear Robust Control. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Guelton, K., Bouarar, T., & Manamanni, N. (2009). Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi–Sugeno systems - A descriptor redundancy approach. Fuzzy Sets and Systems, 160(19), 2796–2811.

    Article  MathSciNet  MATH  Google Scholar 

  • Guerra, T. M., Bernal, M., Guelton, K., & Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models. Fuzzy Sets and Systems, 201, 40–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Guerra, T. M., Kruszewski, A., Vermeiren, L., & Tirmant, H. (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form. Fuzzy Sets and Systems, 157(17), 1248–1259.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, D., & Nguang, S. K. (2007). Static output feedback controller design for fuzzy systems: An ILMI approach. Information Sciences, 177(14), 3005–3015.

    Article  MathSciNet  MATH  Google Scholar 

  • Kau, S.-W., Lee, H.-J., Yang, C.-M., Lee, C.-H., Hong, L., & Fang, C.-H. (2007). Robust \({\cal {H}}_{\infty }\) fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Sets and Systems, 158(2), 135–146.

    Google Scholar 

  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Klug, M., & Castelan, E. B. (2011). Redução de regras e compensação robusta para sistemas Takagi-Sugeno com utilização de modelos não lineares locais (pp. 909–914). São João del-Rei, MG: Anais do X Congresso Brasileiro de Automação Inteligente.

    Google Scholar 

  • Klug, M., Castelan, E. B. & Leite, V. J. S. (2011). A dynamic compensator for parameter varying systems subject to actuator limitations applied to a T-S fuzzy system: Proceedings of the 18th IFAC World Congress (pp. 14495–14500). Milano, Italy.

  • Lee, H. J., & Kim, D. W. (2009). Fuzzy static output feedback may be possible in LMI framework. IEEE Transactions on Fuzzy Systems, 17(5), 1229–1230.

    Article  Google Scholar 

  • Liu, H., Sun, F., & Hu, Y. (2005). \({\cal {H}}_{\infty }\) control for fuzzy singularly perturbed systems. Fuzzy Sets and Systems, 155(2), 272–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, pp. 284–289. http://control.ee.ethz.ch/~joloef/yalmip.php.

  • Mansouri, B., Manamanni, N., Guelton, K., Kruszewski, A., & Guerra, T. M. (2009). Output feedback LMI tracking control conditions with \({\cal {H}}_\infty \) criterion for uncertain and disturbed T-S models. Information Sciences, 179(4), 446–457.

    MathSciNet  MATH  Google Scholar 

  • Mehdi, D., Boukas, E. K., & Bachelier, O. (2004). Static output feedback design for uncertain linear discrete time systems. IMA Journal of Mathematical Control and Information, 21(1), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Montagner, V. F., Oliveira, R. C. L. F., & Peres, P. L. D. (2009). Convergent LMI relaxations for quadratic stabilizability and \({\cal {H}}_\infty \) control for Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 17(4), 863–873.

    Article  Google Scholar 

  • Montagner, V. F., Oliveira, R. C. L. F., & Peres, P. L. D. (2010). Relaxações convexas de convergência garantida para o projeto de controladores para sistemas nebulosos de Takagi-Sugeno. SBA: Controle & Automação, 21(1), 82–95.

    Article  Google Scholar 

  • Mozelli, L., de Avellar, G. S. C., & Palhares, R. M. (2010). Condições LMIs alternativas para sistemas Takagi-Sugeno via função de Lyapunov fuzzy. SBA: Controle & Automação, 21(1), 96–107.

    Article  Google Scholar 

  • Mozelli, L. A., & Palhares, R. M. (2011). Stability analysis of Takagi-Sugeno fuzzy systems via LMI: Methodologies based on a new fuzzy Lyapunov function. SBA: Controle & Automação, 22(6), 664–676.

    Google Scholar 

  • Mozelli, L. A., Palhares, R. M., & Avellar, G. S. C. (2009a). A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Information Sciences, 179(8), 1149–1162.

    Article  MathSciNet  MATH  Google Scholar 

  • Mozelli, L. A., Palhares, R. M., Souza, F. O., & Mendes, E. M. A. M. (2009b). Reducing conservativeness in recent stability conditions of TS fuzzy systems. Automatica, 45(6), 1580–1583.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguang, S. K., & Shi, P. (2006). Robust \({\cal {H}}_\infty \) output feedback control design for fuzzy dynamic systems with quadratic \({\cal {D}}\) stability constraints: An LMI approach. Information Sciences, 176(15), 2161–2191.

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira, R. C. L. F., Bliman, P.-A. & Peres, P. L. D. (2008). Robust LMIs with parameters in multi-simplex: Existence of solutions and applications: Proceedings of the 47th IEEE Conference on Decision and Control (pp. 2226–2231). Cancun, Mexico.

  • Peaucelle, D. & Arzelier, D. (2001). An efficient numerical solution for \({\cal {H}}_2\) static output feedback synthesis: Proceedings of the 2001 European Control Conference (pp. 3800–3805). Porto, Portugal.

  • Rhee, B.-J., & Won, S. (2006). A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design. Fuzzy Sets and Systems, 157(9), 1211–1228.

    Article  MathSciNet  MATH  Google Scholar 

  • Sala, A., & Ariño, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem. Fuzzy Sets and Systems, 158(24), 2671–2686.

    Google Scholar 

  • Skelton, R. E., Iwasaki, T., & Grigoriadis, K. (1998). A Unified Algebraic Approach to Linear Control Design. Bristol, PA: Taylor & Francis.

    Google Scholar 

  • Stoorvogel, A. A. (1993). The robust \({\cal {H}}_2\) control problem: a worst-case design. IEEE Transactions on Automatic Control, 38(9), 1358–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1–4), 625–653.

    Google Scholar 

  • Syrmos, V. L., Abdallah, C. T., Dorato, P., & Grigoriadis, K. (1997). Static output feedback—A survey. Automatica, 33(2), 125–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Takaba, K. (1998). Robust \({\cal {H}}_2\) control of descriptor system with time-varying uncertainty. International Journal of Control, 71(4), 559–579.

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC–15(1), 116–132.

    Article  Google Scholar 

  • Tanaka, K., Hori, T. & Wang, H. O. (2001). A fuzzy Lyapunov approach to fuzzy control system design: Proceedings of the 2001 American Control Conference (pp. 4790–4795). Arlington, VA.

  • Tanaka, K., Hori, T., & Wang, H. O. (2003). A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 11(4), 582–589.

    Article  Google Scholar 

  • Tanaka, K., & Wang, H. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Teixeira, M. C. M., Assunção, E., & Avellar, R. G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers. IEEE Transactions on Fuzzy Systems, 11(5), 613–623.

    Article  Google Scholar 

  • Teixeira, M. C. M., Pietrobom, H. C., & Assunção, E. (2000). Novos resultados sobre a estabilidade e controle de sistemas não-lineares utilizando modelos fuzzy e LMI. SBA: Controle & Automação, 11(2), 37–48.

    Google Scholar 

  • Teixeira, M. C. M., & Żak, S. H. (1999). Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Transactions on Fuzzy Systems, 7(2), 133–142.

    Google Scholar 

  • Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2010a). Controle seletivo com critério \({\cal {H}}_{2}\) de sistemas nebulosos Takagi-Sugeno (pp. 4118–4125). Bonito, MS: Anais do XVIII Congresso Brasileiro de Automática.

  • Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2010b). Selective stabilization of Takagi-Sugeno fuzzy systems: Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (pp. 2772–2779). Barcelona, Spain.

  • Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2011a). Improved stabilization conditions for Takagi-Sugeno fuzzy systems via fuzzy integral Lyapunov functions: Proceedings of the 2011 American Control Conference (pp. 4970–4975). San Francisco, CA.

  • Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2011b). An LMI-based approach to static output feedback stabilization of T-S fuzzy systems: Proceedings of the 18th IFAC World Congress (pp. 12593–12598). Milano, Italy.

  • Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2011c). Relaxações LMIs para realimentação de saída \({\cal {H}}_{\infty }\) de sistemas nebulosos Takagi-Sugeno contínuos no tempo. São João del-Rei, MG: Anais do X Congresso Brasileiro de Automação Inteligente.

  • Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2011d). Selective \({\cal {H}}_{2}\) and \({\cal {H}}_{\infty }\) stabilization of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 19(5), 890–900.

    Article  Google Scholar 

  • Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2012). Reduced-order dynamic output feedback control of continuous-time T-S fuzzy systems. Fuzzy Sets and Systems, 207(16), 27–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Tognetti, E. S., & Oliveira, V. A. (2010). Fuzzy pole placement based on piecewise Lyapunov functions. International Journal of Robust and Nonlinear Control, 20(5), 571–578.

    MathSciNet  MATH  Google Scholar 

  • Wang, H. O., Tanaka, K. & Griffin, M. F. (1995). Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model: Proceedings of the 4th IEEE International Conference on Fuzzy Systems and The 2nd International Fuzzy Engineering Symposium (pp. 531–538). Yokohama, Japan.

Download references

Acknowledgments

This work was partially supported by the Brazilian agencies FAPESP, CAPES, and CNPq. The authors wish to thank the reviewers and the associate editor for the suggestions and remarks that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. D. Peres.

Appendix

Appendix

This Appendix illustrates how to construct numerical tractable conditions from infinite dimension LMIs represented by homogeneous polynomials in multi-simplexes. For that, as stated in Sect. 4, the homogeneous polynomials are given in terms of their coefficients.

As a simple example, consider matrix \(M_g(\mu )\) given in (33). The inequality \(M_g(\mu ) > 0\), for all \(\mu \in \mathcal U \), holds if all terms of (33) are positive definite, that is,

$$\begin{aligned}&M_{((1,0),(2,0))} > 0, ~~ M_{((1,0),(1,1))} > 0, ~~ M_{((1,0),(0,2))} > 0,\\&M_{((0,1),(2,0))} > 0, ~~ M_{((0,1),(1,1))} > 0, ~~ M_{((0,1),(0,2))} > 0. \end{aligned}$$

Using the notations introduced in Sect. 4, one can write

$$\begin{aligned} M_{k_1 k_2} > 0, ~~ \forall k_1 \in \mathcal K _{2}(1), ~~ \forall k_2 \in \mathcal K _{2}(2) \end{aligned}$$

or simply

$$\begin{aligned} M_{k} > 0, ~~ \forall k \in \mathbf K _r(g)=\mathcal K _{2}(1) \times \mathcal K _{2}(2), ~~ g=(1,2). \end{aligned}$$

When other matrices and variables are involved, all terms of the parameter-dependent LMI matrix must be in the same degree to allow the construction of finite dimension LMIs. The advantage of handling multi-simplexes is that each simplex is homogenized to the same degree independently.

Before presenting details of how to construct numerical tractable conditions, from the multinomial theory (generalization of the binomial theorem to polynomials) define

$$\begin{aligned} U_g(\mu ) \triangleq \prod \limits _{i=1}^{n} \underbrace{\left( \sum \limits _{j=1}^{r_i} \mu _{ij} \right) ^{g_i}}_{\sum \limits _{k_i \in \mathcal K _{r_i}(g_i)} \frac{g_i!}{k_i!} \mu _i^k} \triangleq \sum \limits _{k \in \mathbf K _r(g)} \dfrac{g!}{k!} \mu ^k. \end{aligned}$$
(38)

As an example, considering LMI (22), the maximum degree of the polynomial matrix is given by \(w=\max \{g,q+\sigma \},\,\sigma = \text{ ones }(1,n)\). Therefore, all terms of (22) are homogenized to the same degree \(w\), that is

$$\begin{aligned}&\begin{bmatrix} \overline{A}(\mu )^{\prime }S_q(\mu )^{\prime } +S_q(\mu )\overline{A}(\mu )&\star \\ P_g(\mu ) -S_q(\mu )^{\prime } +G_q(\mu )\overline{A}(\mu )&-G_q(\mu ) -G_q(\mu )^{\prime } \end{bmatrix}\nonumber \\&= \begin{bmatrix} \mathcal M _{11}(\mu )&\mathcal M _{12}(\mu )\\ \star&-\mathcal M _{22}(\mu ) \end{bmatrix}\nonumber \\&= \sum \limits _{k \in \mathbf K _r(w)} \mu ^k \begin{bmatrix} \mathcal M _{11_k}&\mathcal M _{12_k}\\ \star&-\mathcal M _{22_k} \end{bmatrix} < 0 \end{aligned}$$
(39)

where

$$\begin{aligned} \mathcal M _{11}(\mu )&= U_{w-q-\sigma }(\mu ) (\overline{A}(\mu )^{\prime }S_q(\mu )^{\prime } +S_q(\mu )\overline{A}(\mu ))\\ \mathcal M _{12}(\mu )&= U_{w-g}(\mu ) P_g(\mu ) - U_{w-q}(\mu ) S_q(\mu )\\&\quad +\, U_{w-q-\sigma }(\mu ) G_q(\mu )\overline{A}(\mu )\\ \mathcal M _{22}(\mu )&= U_{w-q}(\mu ) (G_q(\mu ) +G_q(\mu )^{\prime }) \end{aligned}$$

and

$$\begin{aligned} \mathcal M _{11_k}&= \displaystyle \sum _{\stackrel{\tilde{k} \in \mathcal K _r(w-s-\sigma )}{\tilde{k} \preceq k}} \displaystyle \sum _{\stackrel{\hat{k} \in \mathcal K _r(\sigma )}{\tilde{k}+\hat{k} \preceq k}} \dfrac{(w-s-\sigma )!}{\tilde{k}!}~~\overline{A}_{\hat{k}}^{\prime }S_{k-\tilde{k}-\hat{k}}^{\prime }\\&\quad +\, S_{k-\tilde{k}-\hat{k}}\overline{A}_{\hat{k}} \end{aligned}$$
$$\begin{aligned} \mathcal M _{12_k}&= \displaystyle \sum _{\stackrel{\tilde{k} \in \mathcal K _r(w-g)}{\tilde{k} \preceq k}} \dfrac{(w-g)!}{\tilde{k}!} P_{k-\tilde{k}} -\displaystyle \sum _{\stackrel{\tilde{k} \in \mathcal K _r(w-q)}{\tilde{k} \preceq k}} \dfrac{(w-q)!}{\tilde{k}!} S_{k-\tilde{k}}\\&\quad + \displaystyle \sum _{\stackrel{\tilde{k} \in \mathcal K _r(w-s-\sigma )}{\tilde{k} \preceq k}} \displaystyle \sum _{\stackrel{\hat{k} \in \mathcal K _r(\sigma )}{\tilde{k}+\hat{k} \preceq k}} \dfrac{(w-s-\sigma )!}{\tilde{k}!} G_{k-\tilde{k}-\hat{k}} \overline{A}_{\hat{k}} \end{aligned}$$
$$\begin{aligned} \mathcal M _{22_k}&= \displaystyle \sum _{\stackrel{\tilde{k} \in \mathcal K _r(w-q)}{\tilde{k} \preceq k}} \dfrac{(w-q)!}{\tilde{k}!} G_{k-\tilde{k}} + G_{k-\tilde{k}}^{\prime }. \end{aligned}$$

As can be noted, the last term of (39) is written as a homogeneous polynomial with LMI coefficients. If all the coefficients are imposed to be negative definite (numerically tractable conditions), the feasibility of (22) is assured.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tognetti, E.S., Oliveira, R.C.L.F. & Peres, P.L.D. LMI Relaxations for \(\mathcal{H }_{\infty }\) and \(\mathcal{H }_{2}\) Static Output Feedback of Takagi–Sugeno Continuous-Time Fuzzy Systems. J Control Autom Electr Syst 24, 33–45 (2013). https://doi.org/10.1007/s40313-013-0009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0009-2

Keywords

Navigation