Skip to main content
Log in

Navigation of an Autonomous Car Using Vector Fields and the Dynamic Window Approach

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work presents a safe navigation approach for a car-like robot. The approach relies on a global motion planning based on velocity vector fields along with a dynamic window approach for avoiding unmodeled obstacles. Basically, the vector field is associated with a kinematic, feedback linearization controller whose outputs are validated, and eventually modified, by the dynamic window approach. Experiments with a full-size autonomous car equipped with a stereo camera show that the vehicle was able to track the vector field and avoid obstacles in its way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arras, K., Persson, J., Tomatis, N., & Siegwart, R. (2002). Real-time obstacle avoidance for polygonal robots with a reduced dynamic window: Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3 (pp. 3050–3055). Washington, DC, USA.

  • Arruda, T.A. (2012). Arquitetura de hardware e software para supervisão e controle de um carro autônomo, Master’s thesis, Universidade Federal de Minas Gerais. http://coro.cpdee.ufmg.br.

  • Braid, D., Broggi, A., & Schmiedel, G. (2006). The TerraMax autonomous vehicle. Journal of Field Robotics, 23(9), 693–708.

    Article  Google Scholar 

  • Brock, O., & Khatib, O. (1999). High-speed navigation using the global dynamic window approach: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 341–346). Detroit, Michigan, USA.

  • Broggi, A., Caraffi, C., Fedriga, R. I., & Grisleri, P. (2005). Obstacle detection with stereo vision for off-road vehicle navigation, Proceedings of the International IEEE Workshop on Machine Vision for Intelligent Vehicles (pp. 1–8). San Diego, CA, USA.

  • Dias, J. E. A., Pereira, G. A. S., & Palhares, R. M. (2012). Identificação do modelo dinâmico longitudinal de um carro autônomo. Anais do Congresso Brasileiro de Automática (pp. 461–468). Campina Grande, PB.

  • DARPA (2005). DARPA Grand Challenge web site. http://archive.darpa.mil/grandchallenge05/. Accessed 6 July 2012.

  • Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46–57.

    Article  Google Scholar 

  • Fernandes, L. C., Dias, M. A., Osório, F., & Wolf, D. F. (2010). A driving assistance system for navigation in urban environments, in A. Kuri-Morales and G. Simari (eds), Advances in artificial intelligence - IBERAMIA 2010, Vol. 6433 of Lecture Notes in Computer Science (pp. 542–551). Berlin: Springer.

  • Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4, 23–33.

    Article  Google Scholar 

  • Freitas, E. J. R., & Pereira, G. A. S. (2010). Controle longitudinal de um veículo autônomo, Trabalho de Conclusão de Curso, Escola de Engenharia da Universidade Federal de Minas Gerais. http://coro.cpdee.ufmg.br.

  • Freitas, E. J. R., Vinti, M. N. W., Santos, M. M., Iscold, P., Tôrres, L. A. B., & Pereira, G. A. S. (2009). Desenvolvimento de automação embarcada para um robô móvel baseado em um carro de passeio: Anais do Simpósio Brasileiro de Automação Inteligente (pp. 1–6). Brasilia, DF.

  • Gonçalves, V. M., Pimenta, L. C. A., Maia, C. A., & Pereira, G. A. S. (2010). Navegação de robôs móveis utilizando curvas implícitas. Controle & Automação, 21(1), 43–57.

    Article  Google Scholar 

  • Honório, L. M., Vermaas, L. L. G., Gonçalves, L. M., & Vidigal, M. (2010). Uma metodologia para aprendizado supervisionado aplicada em veículos inteligentes: Anais do XVIII Congresso Brasileiro de Automática (pp. 1028–1035). Bonito, MS.

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

    Article  MathSciNet  Google Scholar 

  • Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011). Towards fully autonomous driving: Systems and algorithms: Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 163–168). Alcalá de Henares, Spain.

  • Lima, D.A. (2010). Navegação segura de um carro autônomo utilizando campos vetoriais e o método da janela dinâmica, Master’s thesis, Universidade Federal de Minas Gerais. http://coro.cpdee.ufmg.br

  • Lima, D. A., & Pereira, G. A. S. (2010). Um sistema de visão estéreo para navegação de um carro autônomo em ambientes com obstáculos: Anais do XVIII Congresso Brasileiro de Automática (pp. 224–231). Bonito, MS.

  • Lima, D. A., & Pereira, G. A. S. (2011). Navegação segura de um carro autônomo utilizando campos vetorias e o método da janela dinâmica: Anais do X Simpósio Brasileiro de Automação Inteligente (pp. 1167–1172). São João del Rei, MG.

  • Luca, A. D., Oriolo, G. & Samson, C. (1998). Feedback control of a nonholonomic car-like robot. in: Robot motion planning and control, Vol. 229 (pp. 171–253). Berlin: Springer.

  • McBride, J. R., Ivan, J. C., Rhode, D. S., Rupp, J. D., Rupp, M. Y., Higgins, J. D., et al. (2008). A perspective on emerging automotive safety applications, derived from lessons learned through participation in the darpa grand challenges. Journal of Field Robotics, 25, 808–840.

    Google Scholar 

  • Megda, P., Esteves, B. & Becker, M. (2011). Determining forbidden steering directions for a passenger car in urban environments based on the velocity obstacle approach and use of trackers: Proceedings of the IX IEEE Latin American Robotics Symposium (pp. 1–6). Bogota, Colombia.

  • Milanes, V., Llorca, D., Vinagre, B., Gonzalez, C., & Sotelo, M. (2010). Clavile: Evolution of an autonomous car: Proceedings of the13th International IEEE Conference on Intelligent Transportation Systems (pp. 1129–1134). Funchal, Portugal.

  • Mirisola, L., Azevedo, H., Ramos, J. J. G., Bueno, S., Paiva, E., & Azinheira, J. (2011). Validação experimental de um veículo robótico terrestre para ambientes externos. Anais do X Simpósio Brasileiro de Automação Inteligente (pp. 1322–1327). São João del Rei, MG.

  • Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., Reschka, A., et al. (2011). Stadtpilot: First fully autonomous test drives in urban traffic: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (pp. 919–924). Washington, DC, USA.

  • Pereira, G. A. S., Pimenta, L. C. A., Chaimowicz, L., Fonseca, A. R., de Almeida, D. S. C., de Corrêa, L., et al. (2009). Robot navigation in multi-terrain outdoor environments. The International Journal of Robotics Research, 28(6), 685–700.

    Article  Google Scholar 

  • Pereira, G. A. S., Rebelo, D. R., Iscold, P., & Torres, L. A. B. (2008). A vector field approach to guide small UAVs through a sequence of waypoints: Anais do XVII Congresso Brasileiro de Automática (pp. 1–6). Juiz de Fora, MG.

  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T. B., Leibs, J., et al. (2009). ROS: an open-source robot operating system: Proceedings of the International Conference on Robotics and Automation: Workshop on Open-Source Software. Anchorage, Alaska.

  • Rebai, K., Azouaoui, O., Benmami, M., & Larabi, A. (2007). Car-like robot navigation at high speed: Proceedings of the IEEE International Conference on Robotics and Biomimetics (pp. 2053–2057), Sanya, P. R. China.

  • Rimon, E., & Koditschek, D. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501–518.

    Article  Google Scholar 

  • Santos, M.M. (2009). Desenvolvimento de um sistema de localização para um veículo terrestre, Master’s thesis, Universidade Federal de Minas Gerais. http://coro.cpdee.ufmg.br.

  • Thrun et al. (2006). Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9), 661–692.

    Article  Google Scholar 

  • Vermaas, L. L. G., de Melo Honório, L., de Jesus, E. O., Freire, M., & Barbosa, D. A. (2009). Intelligent vehicle survey and applications. In G. L. Torres, J. M. Abe, J. I. da Silva Filho, & H. G. Martins (Eds.), Advances in technological applications of logical and intelligent systems (pp. 205–235). Amsterdam: IOS.

    Google Scholar 

Download references

Acknowledgments

This project was financed by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). During the realization of the project, Danilo A. Lima held a master’s scholarship from CAPES. Guilherme A. S. Pereira holds a scholarship from CNPq. This project would not be possible without the hard work of several students and professors from UFMG that spent part of their time making CADU an autonomous vehicle. In this way, the authors sincerely thank Elias Freitas, Érica Campedelli, Frederico Vória, Guilherme Becker, Guilherme Castro, Hélio Guerra Júnior, Jullierme Dias, Leandro Batista, Leonardo Torres, Luciano Pimenta, Marco Túlio Pires, Marlon Vieira, Matheus Vinti, Maurício Baleeiro, Michelle Santos, Paulo Iscold, Pedro Cotta, Tiago Arruda, Tiago Mendonça, and Vitor Sabbagh. Finally, the authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Augusto Silva Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, D.A., Pereira, G.A.S. Navigation of an Autonomous Car Using Vector Fields and the Dynamic Window Approach. J Control Autom Electr Syst 24, 106–116 (2013). https://doi.org/10.1007/s40313-013-0006-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0006-5

Keywords

Navigation