Skip to main content
Log in

IPRSOCP: A Primal-Dual Interior-Point Relaxation Algorithm for Second-Order Cone Programming

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Inspired by the smoothing barrier augmented Lagrangian function in Liu et al. (Math Methods Oper Res 96(3):351–382, 2022), we propose a primal-dual interior-point relaxation algorithm for second-order cone programming, called IPRSOCP. Two features of the IPRSOCP algorithm are as follows. One is that the iterative points of the proposed algorithm need not lie inside the interior region, convening the use of warm-start. The other is that an explicit form of the Schur complement matrix is explored such that the low-rank structure of the Schur complement matrix can be used to improve numerical stability and efficiency. Under suitable assumptions, it is shown that the barrier parameter in the IPRSOCP algorithm tends to zero and the generated sequence of iterations is globally convergent to the solution. Numerical results demonstrate that the IPRSOCP algorithm is competitive with the open-source benchmark solvers, SeDuMi, SDPT3, and ECOS, in terms of robustness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  Google Scholar 

  2. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8(3), 746–768 (1998)

    Article  MathSciNet  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  5. Cai, Z., Toh, K.C.: Solving second-order cone programming via a reduced augmented system approach. SIAM J. Optim. 17(3), 711–737 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Harker, P.T.: A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl. 14(4), 1168–1190 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.D., Sun, D.F., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order cone complementarity problems. Comput. Optim. Appl. 25(1), 39–56 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chi, C.Y., Li, W.C., Lin, C.H.: Convex Optimization for Signal Processing and Communications: from Fundamentals to Applications. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  9. Chi, X.N., Liu, S.Y.: A one-step smoothing Newton method for second-order cone programming. J. Comput. Appl. Math. 223(1), 114–123 (2009)

    Article  MathSciNet  Google Scholar 

  10. Dai, Y.H., Liu, X.W., Sun, J.: A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. J. Ind. Manag. Optim. 16(2), 1009–1035 (2020)

    Article  MathSciNet  Google Scholar 

  11. De Luca, T., Facchinei, F., Kanzow, C.: A theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comput. Optim. Appl. 16, 173–205 (2000)

    Article  MathSciNet  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  13. Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In: 2013 European Control Conference, pp. 3071–3076 (2013)

  14. El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)

    Article  MathSciNet  Google Scholar 

  15. Engelke, S., Kanzow, C.: Predictor-corrector smoothing methods for linear programs with a more flexible update of the smoothing parameter. Comput. Optim. Appl. 23(3), 299–320 (2002)

    Article  MathSciNet  Google Scholar 

  16. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  17. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  18. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier method for nonlinear optimization. SIAM J. Optim. 30(2), 1067–1093 (2020)

    Article  MathSciNet  Google Scholar 

  19. Goldfarb, D., Scheinberg, K.: Product-form Cholesky factorization in interior point methods for second-order cone programming. Math. Program. 103(1), 153–179 (2005)

    Article  MathSciNet  Google Scholar 

  20. Goldfarb, D., Polyak, R., Scheinberg, K., Yuzefovich, I.: A modified barrier-augmented Lagrangian method for constrained minimization. Comput. Optim. Appl. 14, 55–74 (1999)

    Article  MathSciNet  Google Scholar 

  21. Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Program. 83(1–3), 125–143 (1998)

    Article  MathSciNet  Google Scholar 

  22. Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual column generation method. Math. Program. 152, 113–146 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15(2), 593–615 (2005)

    Article  MathSciNet  Google Scholar 

  24. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)

    Article  MathSciNet  Google Scholar 

  25. John, E., Yıldırım, E.A.: Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput. Optim. Appl. 41(2), 151–183 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kamath, A.G., Elango, P., Yu, Y., Mceowen, S., Carson III, J.M., Açıkmeşe, B.: Real-time sequential conic optimization for multi-phase rocket landing guidance. arXiv:2212.00375 (2022)

  27. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17(4), 851–868 (1996)

    Article  MathSciNet  Google Scholar 

  28. Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20(1), 297–320 (2009)

    Article  MathSciNet  Google Scholar 

  29. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(1), 86–125 (1997)

    Article  MathSciNet  Google Scholar 

  30. Kong, L.C., Sun, J., Xiu, N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19(3), 1028–1047 (2008)

    Article  MathSciNet  Google Scholar 

  31. Kuo, Y.J., Mittelmann, H.D.: Interior point methods for second-order cone programming and OR applications. Comput. Optim. Appl. 28, 255–285 (2004)

    Article  MathSciNet  Google Scholar 

  32. Liu, X.W., Dai, Y.H.: A globally convergent primal-dual interior-point relaxation method for nonlinear programs. Math. Comput. 89(323), 1301–1329 (2019)

    Article  MathSciNet  Google Scholar 

  33. Liu, X.W., Dai, Y.H., Huang, Y.K.: A primal-dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs. Math. Methods Oper. Res. 96(3), 351–382 (2022)

    Article  MathSciNet  Google Scholar 

  34. Liu, X.W., Dai, Y.H., Huang, Y.K., Sun, J.: A novel augmented Lagrangian method of multipliers for optimization with general inequality constraints. Math. Comput. 92(341), 1301–1330 (2023)

    Article  MathSciNet  Google Scholar 

  35. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  Google Scholar 

  36. Monteiro, R.D.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7(3), 663–678 (1997)

    Article  MathSciNet  Google Scholar 

  37. Monteiro, R.D., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math. Program. 88(1), 61–83 (2000)

    Article  MathSciNet  Google Scholar 

  38. Narushima, Y., Sagara, N., Ogasawara, H.: A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems. J. Optim. Theory Appl. 149, 79–101 (2011)

    Article  MathSciNet  Google Scholar 

  39. Odonoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homogeneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)

    Article  MathSciNet  Google Scholar 

  40. Qi, L.Q., Sun, D.F., Zhou, G.L.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87(1), 1–35 (2000)

    Article  MathSciNet  Google Scholar 

  41. Skajaa, A., Ye, Y.Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic optimization. Math. Program. 150, 391–422 (2015)

    Article  MathSciNet  Google Scholar 

  42. Smale, S.: Algorithms for solving equations. Proceedings of the International Congress of Mathematicians, Berkeley (1986)

  43. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  44. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998)

    Article  MathSciNet  Google Scholar 

  45. Toh, K.C., Todd, M.J., Tütüncü, R.H.: On the implementation and usage of SDPT3-a Matlab software package for semidefinite-quadratic-linear programming, version 4.0. In: Handbook on Semidefinite. Conic and Polynomial Optimization, pp. 715–754. Springer, Boston (2012)

  46. Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11(1–4), 141–182 (1999)

    Article  MathSciNet  Google Scholar 

  47. Wright, S.J.: Primal-dual Interior-point Methods. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  48. Xu, S., Burke, J.V.: A polynomial time interior-point path-following algorithm for LCP based on Chen-Harker-Kanzow smoothing techniques. Math., Program. 86(1) (1999)

  49. Yildirim, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12(3), 782–810 (2002)

    Article  MathSciNet  Google Scholar 

  50. Zhang, R.J., Liu, X.W., Dai, Y.H.: IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming. Tech. Rep. (2022)

  51. Zhang, R.J., Liu, X.W., Dai, Y.H.: IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming. J. Global Optim. 87(2), 1027–1053 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.-J. Zhang, X.-W. Liu, and Y.-H. Dai designed the algorithm and finished the theoretical proof. R.-J. Zhang and Z.-W. Wang performed the experiments. All authors contributed to the writing and revisions of this paper. All the authors have approved the final manuscript.

Corresponding author

Correspondence to Yu-Hong Dai.

Ethics declarations

Conflict of interest

Yu-Hong Dai is an associate editor-in-chief for Journal of the Operations Research Society of China and he was not involved in the editorial review or the decision to publish this article. No potential Conflict of interest was reported by the authors.

Additional information

The third author was supported by the National Natural Science Foundation of China (Nos. 12071108 and 11671116). The fourth author was supported by the National Natural Science Foundation of China (Nos. 12021001, 11991021,11991020, and 11971372) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA27000000).

Appendix A: Some Proofs

Appendix A: Some Proofs

Proof of Lemma 2

Proof

Define the spectral decomposition \(\varvec{v}_i = \eta _1 \varvec{d}_1 + \eta _2 \varvec{d}_2\). Then

$$\begin{aligned} \begin{aligned} \varvec{u}_{i}&=\left( \left( \varvec{s}_{i}-\rho \varvec{x}_{i}\right) ^{2}+4 \rho \mu \varvec{e}_{i}\right) ^{\frac{1}{2}} \\&=\left( \eta _{1}^{2} \varvec{d}_{1}+\eta _{2}^{2} \varvec{d}_{2}+4 \rho \mu \varvec{d}_{1}+4 \rho \mu \varvec{d}_{2}\right) ^{\frac{1}{2}} \\&=\sqrt{\eta _{1}^{2}+4 \rho \mu }\varvec{d}_{1}+\sqrt{\eta _{2}^{2}+4 \rho \mu } \varvec{d}_{2}. \end{aligned} \end{aligned}$$

Therefore, we can obtain

$$\begin{aligned} \begin{aligned}&\varvec{z}_{i}=\frac{\varvec{u}_{i}-\varvec{v}_{i}}{2 \rho }=\frac{\sqrt{\eta _{1}^{2}+4 \rho \mu }-\eta _{1}}{2 \rho } \varvec{d}_{1}+\frac{\sqrt{\eta _{2}^{2}+4 \rho \mu }-\eta _{2}}{2 \rho } \varvec{d}_{2}, \\ {}&\varvec{y}_{i}=\frac{\varvec{u}_{i}+\varvec{v}_{i}}{2 \rho }=\frac{\sqrt{\eta _{1}^{2}+4 \rho \mu }+\eta _{1}}{2 \rho } \varvec{d}_{1}+\frac{\sqrt{\eta _{2}^{2}+4 \rho \mu }+\eta _{2}}{2 \rho } \varvec{d}_{2}. \end{aligned} \end{aligned}$$

\(\varvec{z}_i\) and \(\varvec{y}_i\) share the same Jordan frame \(\{\varvec{d}_1,\varvec{d}_2\}\) and are thus operator commutative.

Because the eigenvalues of \(\varvec{z}_i\) and \(\varvec{y}_i\) are non-negative, we have \(\varvec{z}_{i},\, \varvec{y}_{i} \in K_{i}\), and

$$\begin{aligned}&\varvec{z}_{i} \circ \varvec{y}_{i} \\ =&\left( \frac{\sqrt{\eta _{1}^{2}+4 \rho \mu }-\eta _{1}}{2 \rho } \varvec{d}_{1}+ \frac{\sqrt{\eta _{2}^{2}+4 \rho \mu }-\eta _{2}}{2 \rho } \varvec{d}_{2}\right) \circ \left( \frac{\sqrt{\eta _{1}^{2}+4 \rho \mu }+\eta _{1}}{2 \rho } \varvec{d}_{1} +\frac{\sqrt{\eta _{2}^{2}+4 \rho \mu }+\eta _{2}}{2 \rho } \varvec{d}_{2}\right) \\ =&\frac{\mu }{\rho } \varvec{d}_{1}+\frac{\mu }{\rho } \varvec{d}_{2}=\frac{\mu }{\rho } \varvec{e}_{i},\,i = 1,2,\cdots ,n, \end{aligned}$$

which completes the proof.

Proof of Theorem 5

Proof

The directional derivative of the merit function \(\phi _{\left( \mu , \rho ^{(k)}\right) }(\varvec{w})\) at the point \(\left( \mu ^{(k)}, \varvec{w}^{(k)}\right) \) along the direction \(\left( \Delta \mu ^{(k)}, \Delta \varvec{w}^{(k)}\right) \) is

$$\begin{aligned} \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) }^{\prime }\left( \varvec{w}^{(k)}; \Delta \mu ^{(k)}, \Delta \varvec{w}^{(k)}\right) =-2 \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) }\left( \varvec{w}^{(k)}\right) . \end{aligned}$$
(62)

The Taylor expansion of \(\phi _{\left( \mu ^{(k)}+\alpha \Delta \mu ^{(k)}, \rho ^{(k)}\right) }\left( \varvec{w}^{(k)}+\alpha \Delta \varvec{w}^{(k)}\right) \) with respect to \(\alpha \) at \(\alpha =0\) shows that

$$\begin{aligned} \begin{aligned}&\phi _{\left( \mu ^{(k)}+\alpha \Delta \mu ^{(k)}, \rho ^{(k)}\right) } \left( \varvec{w}^{(k)}+\alpha \Delta \varvec{w}^{(k)} \right) - \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) } \left( \varvec{w}^{(k)}\right) \\&\quad =\alpha \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) }^{\prime } \left( \varvec{w}^{(k)}; \Delta \mu ^{(k)}, \Delta \varvec{w}^{(k)}\right) +o(\alpha ) \\&\quad =-2 \tau \alpha \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) } \left( \varvec{w}^{(k)}\right) -2(1-\tau ) \alpha \phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) } \left( \varvec{w}^{(k)}\right) +o(\alpha ). \end{aligned} \end{aligned}$$
(63)

Since \(\tau < 1\) and \(\phi _{\left( \mu ^{(k)}, \rho ^{(k)}\right) } \left( \varvec{w}^{(k)}\right) > 0\), then (45) holds for all sufficiently small \(\alpha > 0\).

Proof of Theorem 6

Proof

By Lemma 8, we have \(\phi _{(\mu ^{(k)},\rho ^{(k)})}(\varvec{w}^{(k)})\leqslant \phi _{(\mu ^{(0)},\rho ^{(0)})}(\varvec{w}^{(0)})\) for all \(k = 1,2,\cdots \) By the definition of the merit function \(\phi _{(\mu ^{(k)},\rho ^{(k)})}(\varvec{w}^{(k)})\), we can obtain

$$\begin{aligned} \frac{1}{2}\Vert \varvec{z}^{(k)}-\varvec{x}^{(k)}\Vert ^2\leqslant \phi _{(\mu ^{(0)},\rho ^{(0)})}(\varvec{w}^{(0)}), \end{aligned}$$

which together with Assumption 2 implies that \(\{\varvec{z}^{(k)}\}\) is bounded.

Define the spectral decomposition \(\varvec{v}_i= \eta _1 \varvec{d}_1 + \eta _2 \varvec{d}_2\). By the definition of \(\varvec{y}_i\), we have

$$\begin{aligned} \varvec{y}_i = \dfrac{\sqrt{\eta _1^2+4\rho \mu }+\eta _1}{2\rho } \varvec{d}_1 + \dfrac{\sqrt{\eta _2^2+4\rho \mu }+\eta _2}{2\rho } \varvec{d}_2. \end{aligned}$$

Since \(\Vert \varvec{d}_i\Vert =\dfrac{1}{\sqrt{2}},\,i=1,2\), it is sufficient to prove that \(\dfrac{\sqrt{\eta _1^2+4\rho \mu }+\eta _1}{2\rho }\) and \(\dfrac{\sqrt{\eta _2^2+4\rho \mu }+\eta _2}{2\rho }\) are bounded. Note that

$$\begin{aligned}{} & {} \dfrac{\sqrt{\eta _1^2+4\rho \mu }+\eta _1}{2\rho }\\{} & {} \quad \leqslant \dfrac{|\eta _1|}{\rho } + \sqrt{\dfrac{\mu }{\rho }}\\{} & {} \quad \leqslant \dfrac{|\varvec{s}_{i0}-\rho \varvec{x}_{i0}|+\Vert \bar{\varvec{s}_i}-\rho \bar{\varvec{x}}_i\Vert }{\rho } + \sqrt{\dfrac{\mu }{\rho }}\\{} & {} \quad \leqslant \dfrac{\sqrt{2}\Vert \varvec{s}_i-\rho \varvec{x}_i\Vert }{\rho }+ \sqrt{\dfrac{\mu }{\rho }}\\{} & {} \quad \leqslant \dfrac{\sqrt{2}\Vert \varvec{s}_i\Vert }{\rho }+\sqrt{2}\Vert \varvec{x}_i\Vert + \sqrt{\dfrac{\mu }{\rho }}\\{} & {} \quad \leqslant \sqrt{2}\dfrac{\max \{1,\Vert \varvec{x}_i\Vert \}}{\sigma }+\sqrt{2}\Vert \varvec{x}_i\Vert + \sqrt{\dfrac{\mu }{\rho }}. \end{aligned}$$

The third inequality holds because \(|a|+|b|\leqslant \sqrt{2}\sqrt{a^2+b^2}\). Thus, \(\dfrac{\sqrt{\eta _1^2+4\rho \mu }+\eta _1}{2\rho }\) is bounded under Assumption 2. The boundedness of \(\dfrac{\sqrt{\eta _2^2+4\rho \mu }+\eta _2}{2\rho }\) can be similarly deduced. So \(\{\varvec{y}^{(k)}\}\) is bounded.

Due to \(\rho ^{(k)}\varvec{y}^{(k)}_{i}\varvec{z}^{(k)}_{i}=\mu ^{(k)}\varvec{e}_i\), we have \(\Vert \varvec{y}^{(k)}_{i}\varvec{z}^{(k)}_{i}\Vert =\dfrac{\mu ^{(k)}}{\rho ^{(k)}}\). Combined with the boundedness of \(\{\varvec{y}^{(k)}_i\}\) and \(\{\varvec{z}^{(k)}_i\}\), one has the desired inequalities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RJ., Wang, ZW., Liu, XW. et al. IPRSOCP: A Primal-Dual Interior-Point Relaxation Algorithm for Second-Order Cone Programming. J. Oper. Res. Soc. China (2024). https://doi.org/10.1007/s40305-024-00538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-024-00538-z

Keywords

Mathematics Subject Classification

Navigation