Skip to main content
Log in

Derivative-Free Optimization with Transformed Objective Functions and the Algorithm Based on the Least Frobenius Norm Updating Quadratic Model

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Derivative-free optimization (DFO) problems are optimization problems where the derivative information is unavailable. The least Frobenius norm updating quadratic interpolation model function is one of the essential under-determined model functions for model-based derivative-free trust-region methods. This article proposes derivative-free optimization with transformed objective functions (DFOTO) and gives a model-based trust-region method with the least Frobenius norm model. The model updating formula is based on Powell’s formula and can be easily implemented. The method shares the same framework with those for problems without transformations, and its query scheme is given. We propose the definitions related to optimality-preserving transformations to understand the interpolation model in our method when minimizing transformed objective functions. We prove the existence of model optimality-preserving transformations beyond translation transformations. The necessary and sufficient condition for such transformations is given. An interesting discovery is that, as a fundamental transformation, the affine transformation with a (non-trivial) positive multiplication coefficient is not model optimality-preserving. We also analyze the corresponding least Frobenius norm updating model and its interpolation error when the objective function is affinely transformed. The convergence property of a provable algorithmic framework containing the least Frobenius norm updating quadratic model for minimizing transformed objective functions is given. Numerical results show that our method can successfully solve most test problems with objective optimality-preserving transformations, even though some of such transformations will change the optimality of the model function. To our best knowledge, this is the first work providing the model-based derivative-free algorithm and analysis for transformed problems with the function evaluation oracle. This article also proposes the “moving-target” optimization problem as an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Constrained problems will be considered in the future. Our results can be extended to some constrained problems in a straightforward way. DFOTO can also be extended to the general transformed optimization using derivative information.

  2. The general form of the unconstrained private black-box optimization problem can be formulated as \( \min _{\varvec{x} \in {\mathbb {R}}^n}\ f(\varvec{x}), \) where f is a private black-box function. The evaluation of f is expensive, and its output value is encrypted to \(f_k\) by adding noises, and the true function value of f at each corresponding point is private.

  3. We call the set of interpolation points “the interpolation set”.

  4. The number of interpolation points is smaller than the number of elements in the polynomial basis.

  5. The degree is not larger than 2.

  6. The point \(\varvec{x}_{\text {opt}}\) is usually set as the interpolation point with optimal function value in the interpolation set.

  7. “-Trans” denotes that it is designed for solving problems with transformed objective functions.

  8. https://pengchengxielsec.github.io.

  9. Such unconstrained problem is formulated by BVERI, and some weak constraints are deleted in advance for simplicity, which does not influent the optimization.

References

  1. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  2. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Berlin (2017)

    Book  Google Scholar 

  3. Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642–664 (2006)

    Article  MathSciNet  Google Scholar 

  4. Aly, A., Guadagni, G., Dugan, J.B.: Derivative-free optimization of neural networks using local search. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference, pp. 293–299. IEEE, Piscataway (2019)

  5. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  6. Levina, T., Levin, Y., McGill, J., Nediak, M.: Dynamic pricing with online learning and strategic consumers: an application of the aggregating algorithm. Oper. Res. 57(2), 327–341 (2009)

    Article  Google Scholar 

  7. Li, S., Xie, P., Zhou, Z., Wang, Z., Li, Z., Liang, X., Qu, B.: Simulation of interaction of folded waveguide space traveling wave tubes with derivative-free mixedinteger based NEWUOA algorithm. In: 2021 7th International Conference on Computer and Communications, pp. 1215–1219. IEEE, Piscataway (2021)

  8. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  Google Scholar 

  9. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  10. Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269–288 (1999)

    Article  MathSciNet  Google Scholar 

  11. Kolda, T., Lewis, R., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  Google Scholar 

  12. Audet, C., Le Digabel, S., Tribes, C.: NOMAD user guide. Technical report, Les Cahiers du GERAD (2009)

  13. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  14. Swann, W.H.: Direct search methods. In: Murray, W. (ed.) Numerical Methods for Unconstrained Optimization, pp. 13–28. Academic Press, London (1972)

    Google Scholar 

  15. Smith, C.S.: The automatic computation of maximum likelihood estimates. Technical report, Scientific Department, National Coal Board (1962)

  16. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  Google Scholar 

  17. Stewart, G., III.: A modification of Davidon’s minimization method to accept difference approximations of derivatives. J. ACM 14(1), 72–83 (1967)

    Article  MathSciNet  Google Scholar 

  18. Gill, P.E., Murray, W.: Quasi-Newton methods for unconstrained optimization. IMA J. Appl. Math. 9(1), 91–108 (1972)

    Article  MathSciNet  Google Scholar 

  19. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Computing forward-difference intervals for numerical optimization. SIAM J. Sci. Stat. Comput. 4(2), 310–321 (1983)

    Article  MathSciNet  Google Scholar 

  20. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17(2), 527–566 (2017)

    Article  MathSciNet  Google Scholar 

  21. Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex optimization: the power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)

    Article  MathSciNet  Google Scholar 

  22. Scheinberg, K.: Finite difference gradient approximation: to randomize or not? INFORMS J. Comput. 34(5), 2384–2388 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhigljavsky, A.A.: Theory of Global Random Search. Springer, Berlin (2012)

    Google Scholar 

  24. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Found. Comput. Math. 22(2), 507–560 (2022)

    Article  MathSciNet  Google Scholar 

  25. Winfield, D.: Function and Functional Optimization by Interpolation in Data Tables. PhD thesis, Harvard University, Cambridge (1969)

  26. Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives. Math. Program. 97, 605–623 (2003)

    Article  MathSciNet  Google Scholar 

  27. Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. 100, 183–215 (2004)

    Article  MathSciNet  Google Scholar 

  28. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Pillo, G., Roma, M. (eds.) Large-scale Nonlinear Optimization, pp. 255–297. Springer, Boston (2006)

    Chapter  Google Scholar 

  29. Conn, A., Scheinberg, K., Vicente, L.N.: Geometry of sample sets in derivative free optimization. Part ii: polynomial regression and underdetermined interpolation. IMA J. Numer. Anal. 28, 721–748 (2008)

    Article  MathSciNet  Google Scholar 

  30. Conn, A., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region algorithms to first- and second-order critical points. SIAM J. Optim. 20, 387–415 (2009)

    Article  MathSciNet  Google Scholar 

  31. Xie, P., Yuan, Y.-X.: Least \(H^2\) norm updating quadratic interpolation model function for derivative-free trust-region algorithms. arXiv:2302.12017 (2023)

  32. Xie, P., Yuan, Y.-X.: A new two-dimensional model-based subspace method for large-scale unconstrained derivative-free optimization: 2D-MoSub. arXiv:2309.14855 (2023)

  33. Xie, P.: Sufficient conditions for distance reduction between the minimizers of non-convex quadratic functions in the trust region. arXiv:2310.08603 (2023)

  34. Björkman, M., Holmström, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1, 373–397 (2000)

    Article  MathSciNet  Google Scholar 

  35. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)

    Article  MathSciNet  Google Scholar 

  36. Xie, P., Yuan, Y.-X.: A derivative-free optimization algorithm combining line-search and trust-region techniques. Chin. Ann. Math. Ser. B 44(5), 719–734 (2023)

    Article  MathSciNet  Google Scholar 

  37. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of trust-region methods based on probabilistic models. SIAM J. Optim. 24(3), 1238–1264 (2014)

    Article  MathSciNet  Google Scholar 

  38. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Complexity and global rates of trust-region methods based on probabilistic models. IMA J. Numer. Anal. 38(3), 1579–1597 (2018)

    Article  MathSciNet  Google Scholar 

  39. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Springer, Dordrecht (1987)

    Book  Google Scholar 

  40. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, vol. 1, pp. 525–532. Morgan Kaufmann Publishers, Burlington (1999)

  41. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic descent. SIAM J. Optim. 25(3), 1515–1541 (2015)

    Article  MathSciNet  Google Scholar 

  42. Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–2368 (2013)

    Article  MathSciNet  Google Scholar 

  43. Larson, J., Wild, S.M.: A batch, derivative-free algorithm for finding multiple local minima. Optim. Eng. 17(1), 205–228 (2016)

    Article  MathSciNet  Google Scholar 

  44. Zhang, H., Conn, A.R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization. SIAM J. Optim. 20(6), 3555–3576 (2010)

    Article  MathSciNet  Google Scholar 

  45. Cartis, C., Roberts, L.: A derivative-free Gauss-Newton method. Math. Program. Comput. 11(4), 631–674 (2019)

    Article  MathSciNet  Google Scholar 

  46. Xie, P.: A derivative-free trust-region method for optimization on the ellipsoid. J. Phys. Conf. Ser. 2620(1), 012007 (2023)

    Article  Google Scholar 

  47. Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numer. 28, 287–404 (2019)

    Article  MathSciNet  Google Scholar 

  48. Zhang, Z.: Derivative-free optimization. In: Yuan, Y.-X. (ed.) China Discipline Development Strategy: Mathematical Optimization, pp. 84–92. Science Press, Beijing (2021) . (in Chinese)

    Google Scholar 

  49. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  Google Scholar 

  50. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  51. Scheinberg, K.: Manual for Fortran software package DFO version 2.0. Technical report (2003)

  52. Kelley, C.T.: Users guide for IMFIL version 1.0. Technical report (2011)

  53. Powell, M.J.D.: A tolerant algorithm for linearly constrained optimization calculations. Math. Program. 45, 547–566 (1989)

    Article  MathSciNet  Google Scholar 

  54. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Springer, Dordrecht (1994)

    Chapter  Google Scholar 

  55. Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. Ser. B 92, 555–582 (2002)

    Article  MathSciNet  Google Scholar 

  56. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, University of Cambridge (2009)

  57. Powell, M.J.D.: On fast trust region methods for quadratic models with linear constraints. Math. Program. Comput. 7(3), 237–267 (2015)

    Article  MathSciNet  Google Scholar 

  58. Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and robustness of model-based derivative-free optimization solvers. ACM Trans. Math. 45(3), 1–41 (2019)

    Article  MathSciNet  Google Scholar 

  59. Cartis, C., Roberts, L.: Scalable subspace methods for derivative-free nonlinear least-squares optimization. Math. Program. 199(1–2), 461–524 (2023)

    Article  MathSciNet  Google Scholar 

  60. Ragonneau, T.M., Zhang, Z.: PDFO: a cross-platform package for Powell’s derivative-free optimization solvers. arXiv:2302.13246 (2023)

  61. Ragonneau, T.M.: Model-based derivative-free optimization methods and software. PhD thesis, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong (2022)

  62. Xie, P.: NEWUOA-Matlab-Version-2.0 (2022)

  63. Xie, P.: BOBYQA-Matlab-Version-1.0 (2023)

  64. Zhang, Z.: PRIMA: reference implementation for Powell’s methods with modernization and amelioration. http://www.libprima.net, https://doi.org/10.5281/zenodo.8052654(2023)

  65. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 202–210. ACM, New York (2003)

  66. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology—CRYPTO 2004, pp. 528–544. Springer, Berlin (2004)

  67. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography: Third Theory of Cryptography Conference, pp. 265–284. Springer, Berlin (2006)

    Chapter  Google Scholar 

  68. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 75–84. ACM, New York

  69. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

    Article  MathSciNet  Google Scholar 

  70. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science. IEEE, Piscataway (2007)

  71. Wang, Y., Hale, M., Egerstedt, M., Dullerud, G.E.: Differentially private objective functions in distributed cloud-based optimization. In: 2016 IEEE 55th Conference on Decision and Control, pp. 3688–3694. IEEE, Piscataway (2016)

  72. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud computing: ciphertext-policy attribute-based signcryption. Future Gener. Comput. Syst. 52, 67–76 (2015)

    Article  Google Scholar 

  73. Kusner, M., Gardner, J., Garnett, R., Weinberger, K.: Differentially private Bayesian optimization. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 918–927. PMLR, Lille, France (2015)

  74. Grapiglia, G.N., Yuan, J., Yuan, Y.-x: A derivative-free trust-region algorithm for composite nonsmooth optimization. Comput. Appl. Math. 35(2), 475–499 (2016)

    Article  MathSciNet  Google Scholar 

  75. Deng, G., Ferris, M.C.: Adaptation of the UOBYQA algorithm for noisy functions. In: Proceedings of the 2006 Winter Simulation Conference, pp. 312–319. IEEE, Piscataway (2006)

  76. Jamieson, K.G., Nowak, R., Recht, B.: Query complexity of derivative-free optimization. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc., New York (2012)

    Google Scholar 

  77. Conn, A.R., Scheinberg, K., Toint, Ph. L.: On the convergence of derivative-free methods for unconstrained optimization. In: Iserles, A., Buhmann, M. (eds.) Approximation Theory and Optimization: Tributes to M. J. D. Powell, pp. 83–108. Cambridge University Press, Cambridge (1997)

  78. Conn, A.R., Scheinberg, K., Toint, Ph.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(1), 397–414 (1997)

    Article  MathSciNet  Google Scholar 

  79. Conn, A.R., Scheinberg, K., Toint, Ph. L.: A derivative free optimization algorithm in practice. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 4718. AIAA, Reston (1998)

  80. Powell, M.J.D.: On updating the inverse of a KKT matrix. In: Yuan, Y.-X. (ed.) Numerical Linear Algebra and Optimization, pp. 56–78. Science Press, Beijing (2004)

    Google Scholar 

  81. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2006)

    Google Scholar 

  82. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. on Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  Google Scholar 

  83. Conn, A.R., Gould, N., Lescrenier, M., Toint, Ph.L.: Performance of a multifrontal scheme for partially separable optimization. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 79–96. Springer, Dordrecht (1994)

    Chapter  Google Scholar 

  84. Toint, Ph.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Math. Comput. 32(143), 839–851 (1978)

    Article  MathSciNet  Google Scholar 

  85. Li, Y.J., Li, D.H.: Truncated regularized Newton method for convex minimizations. Comput. Optim. Appl. 43, 119–131 (2009)

    Article  MathSciNet  Google Scholar 

  86. Lukšan, L., Matonoha, C., Vlcek, J.: Modified CUTE problems for sparse unconstrained optimization. Technical report, Institute of Computer Science AS ČR (2010)

  87. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)

    MathSciNet  Google Scholar 

  88. Li, G.: The secant/finite difference algorithm for solving sparse nonlinear systems of equations. SIAM J. Numer. Anal. 25, 1181–1196 (1988)

    Article  MathSciNet  Google Scholar 

  89. Gould, N., Orban, D., Toint, Ph. L.: General CUTEr documentation. Technical report (2001)

  90. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  91. Zhang, Z.: The Research on Derivative-free Optimization Methods. PhD thesis, Graduate School of the Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing (2012)

  92. Wilson, J.D., Wintucky, E.G., Vaden, K.R., Force, D.A., Krainsky, I.L., Simons, R.N., Robbins, N.R., Menninger, W.L., Dibb, D.R., Lewis, D.E.: Advances in space traveling-wave tubes for NASA missions. Proc. IEEE 95(10), 1958–1967 (2007)

    Article  Google Scholar 

  93. Levush, B.: The design and manufacture of vacuum electronic amplifiers: progress and challenges. In: 2019 International Vacuum Electronics Conference (IVEC), pp. 1–5. IEEE, Piscataway (2019)

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous referees for their careful reading and providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the design, analysis, and writing.

Corresponding author

Correspondence to Peng-Cheng Xie.

Ethics declarations

Conflict of interest

Ya-Xiang Yuan is the editor-in-chief for Journal of the Operations Research Society of China and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was funded by the National Natural Science Foundation of China (No. 12288201).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, PC., Yuan, YX. Derivative-Free Optimization with Transformed Objective Functions and the Algorithm Based on the Least Frobenius Norm Updating Quadratic Model. J. Oper. Res. Soc. China (2024). https://doi.org/10.1007/s40305-023-00532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00532-x

Keywords

Mathematics Subject Classification

Navigation