Skip to main content
Log in

On the Metric Resolvent: Nonexpansiveness, Convergence Rates and Applications

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we study the nonexpansive properties of metric resolvent and present the convergence analysis for the associated fixed-point iterations of both Banach–Picard and Krasnosel’skiĭ–Mann types. A by-product of our expositions also extends the proximity operator and Moreau’s decomposition identity to arbitrary metric. It is further shown that many classes of the first-order operator splitting algorithms, including the alternating direction methods of multipliers, primal–dual hybrid gradient and Bregman iterations, can be expressed by the fixed-point iterations of a simple metric resolvent, and thus, the convergence can be easily obtained within this unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that we use a mismatch of iteration indices between u and s: \(x^k:= (s^k, u^{k-1})\). This technique can also be found in [50].

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, 2nd ed. Springer, New York (2017)

  2. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Teboulle, M.: A simplified view of first order methods for optimization. Math. Program. Ser. B 170, 67–96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordure un et la résolution par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue Fr. Autom. Inf. Rech. Opér. Anal. Numér. 2, 41–76 (1975)

  6. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  7. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA (2008)

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstein, T., Osher, S.: The split Bregman method for \(\ell _1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Program. 159, 403–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P., Vũ, B.: Variable metric quasi-Fejér monotonicity. Nonlinear Anal. Theory Methods Appl. 78, 17–31 (2016)

    Article  MATH  Google Scholar 

  15. Latafat, P., Patrinos, P.: Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework, pp. 97–120. Springer, Cham (2018)

    MATH  Google Scholar 

  16. Jakovetić, D.: A unification and generalization of exact distributed first-order methods. IEEE Trans. Signal Inf. Process. Over Netw. 5(1), 31–46 (2019)

    Article  MathSciNet  Google Scholar 

  17. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim. 22(2), 557–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giselsson, P., Boyd, S.: Linear convergence and metric selection for Douglas-Rachford splitting and ADMM. IEEE Trans. Autom. Control 62(2), 532–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas–Rachford splitting and ADMM. In: 53rd IEEE Conference on Decision and Control, LA, California, USA, pp. 5033–5039 (2014)

  20. He, B., Yuan, X.: On the convergence rate of Douglas–Rachford operator splitting method. Math. Program. 153(2), 715–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci. 6(3), 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25(4), 829–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B., Yuan, X.: On the \(\cal{O} (1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, B., Ma, F., Yuan, X.: An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. J. Math. Imaging Vis. 58(2), 279–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai, J., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78, 1515–1536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cai, J., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for \(\ell _1\)-norm minimization. Math. Comput. 78, 2127–2136 (2009)

    Article  MATH  Google Scholar 

  30. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Parente, L.A., Lotito, P.A., Solodov, M.V.: A class of inexact variable metric proximal point algorithms. SIAM J. Optim. 19(1), 240–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Burke, J.V., Qian, M.: A variable metric proximal point algorithm for monotone operators. SIAM J. Control. Optim. 37(2), 353–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizabal, C.: A family of variable metric proximal methods. Math. Program. 68, 15–47 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Informatique et Recherche Opérationnelle 4, 154–158 (1970)

    MATH  Google Scholar 

  35. Rochafellar, R.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  36. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1996)

    Google Scholar 

  37. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Grundlehren der Mathematischen Wissenschaft (2004)

  38. Beck, A.: First-Order Methods in Optimization. SIAM-Society for Industrial and Applied Mathematics (2017)

  39. Xue, F.: On the nonexpansive operators based on arbitrary metric: a degenerate analysis. Results Math. https://doi.org/10.1007/s00025-022-01766-6 (2022)

  40. Chouzenoux, E., Pesquet, J., Repetti, A.: A block coordinate variable metric forward–backward algorithm. J. Global Optim. 66, 457–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bredies, K., Sun, H.: A proximal point analysis of the preconditioned alternating direction method of multipliers. J. Optim. Theory Appl. 173, 878–907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Passty, G.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)

    Google Scholar 

  44. Bertsekas, D.P.: Convex Optimization Theory, 1st ed. Athena Scientific, Nashua (2009)

  45. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  46. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  47. Fang, E.X., He, B., Liu, H., Yuan, X.: Generalized alternating direction method of multipliers: new theoretical insights and applications. Math. Program. Comput. 7(2), 149–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, X., Sun, D., Toh, K.C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155, 333–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sawatzky, A., Xu, Q., Schirra, C.O., Anastasio, M.A.: Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT. IEEE Trans. Med. Imaging 33(8), 1657–1668 (2014)

    Article  Google Scholar 

  50. Boţ, R., Csetnek, E., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. Ser. A 150, 251–279 (2015)

  51. Ma, F., Ni, M.: A class of customized proximal point algorithms for linearly constrained convex optimization. Comput. Appl. Math. 37, 896–911 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tao, M., Yuan, X.: On the optimal linear convergence rate of a generalized proximal point algorithm. J. Sci. Comput. 74, 826–850 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen, C., He, B., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. Ser. A 155, 57–79 (2016)

  55. He, B., Yuan, X.: A class of ADMM-based algorithms for three-block separable convex programming. Comput. Optim. Appl. 70, 791–826 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Deng, W., Lai, M., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(\cal{O} (1/k)\) convergence. J. Sci. Comput. 71(2), 712–736 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is gratefully indebted to the anonymous reviewer for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 62071028).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F. On the Metric Resolvent: Nonexpansiveness, Convergence Rates and Applications. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00518-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00518-9

Keywords

Mathematics Subject Classification

Navigation