Skip to main content
Log in

A Semidefinite Relaxation Method for Linear and Nonlinear Complementarity Problems with Polynomials

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

This paper considers semidefinite relaxation for linear and nonlinear complementarity problems. For some particular copositive matrices and tensors, the existence of a solution for the corresponding complementarity problems is studied. Under a general assumption, we show that if the solution set of a complementarity problem is nonempty, then we can get a solution by the semidefinite relaxation method; while if it does not have a solution, we can obtain a certificate for the infeasibility. Some numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)

    MATH  Google Scholar 

  2. Mangasarian, O.L.: Solution of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33, 175–185 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, B., Harker, P.T.: A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl. 14, 1168–1190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  6. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, D.K., Wang, L., Liu, Y.Y.: A relaxation general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. J. Comput. Appl. Math. 409, 114140 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, J., Xiu, N., Qi, H.D.: Nonlinear Complementarity Theory and Algorithms. Shanghai Science and Technology Press, Shanghai (2006). (in Chinese)

    Google Scholar 

  10. Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Z.H., Qi, L.: Tensor complementarity problems - Part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Z.H., Qi, L.: Tensor complementarity problems - Part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, M., Liu, H., Jeng, D.-S., Qi, W., Fang, Q.: Modelling the wave-induced instantaneous liquefaction in a non-cohesive seabed as a nonlinear complementarity problem. Comput. Geotech. 137, 104275 (2021)

    Article  Google Scholar 

  14. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13(1–3), 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, B., Chen, X., Kanzow, C.: A penalized Fischer-Burmeister NCP-function. Math. Program. 88(1), 211–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, J., Pan, S.: A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40(3), 389–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5, 97–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, H.D., Liao, L.Z.: A smoothing Newton method for general nonlinear complementarity problems. Comput. Optim. Appl. 17, 231–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yamashita, N., Fukushima, M.: Modified Newton methods for solving a semismooth reformulation of monontone complementarity problems. Math. Program. 76, 469–491 (1997)

    Article  MATH  Google Scholar 

  22. Alcantara, J.H., Chen, J.-S.: Neural networks based on three classes of NCP-functions for solving nonlinear complemenratiry problems. Neurocomputing 359, 102–113 (2019)

    Article  Google Scholar 

  23. Potra, F.A., Wright, S.J.: Interior-point methods. J. Comput. Appl. Math. 124, 255–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Potra, F.A., Ye, Y.: Interior-point methods for nonlinear complementarity problems. J. Optim. Theory Appl. 88(3), 617–642 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Noor, M., Bnouhachem, A.: Modified poximal-point method for nonlinear complementarity problems. J. Comput. Appl. Math. 197(2), 395–405 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Che, M.L., Qi, L., Wei, Y.M.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33(3), 308–323 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11(7), 1407–1426 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, W., Luo, Z., Qi, L.: \(P\)-tensors, \(P_0\)-tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Huang, Z.H., Hu, S.: Connectedness of the solution set of the tensor complementarity problem. J. Math. Anal. Appl. 487, 123965 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, Y., Yu, G.H.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Y., Gu, W.Z., Huang, Z.H.: Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems. Front. Math. China 14(3), 661–671 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, S.L., Xu, H.R.: A two-level additive Schwarz method for a kind of tensor complementarity problem. Linear Algebra Appl. 584, 394–408 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. He, H., Bai, X., Ling, C., Zhou, G.: An index detecting algorithm for a class of TCP(\(\cal{A} \),\(q\)) equipped with nonsingular \(\cal{M} \)-tensors. J. Comput. Appl. Math. 394, 113548 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei, P., Wang, X., Wei, Y.: Neural network models for time-varying tensor complementarity problems. Neurocomputing 523, 18–32 (2023)

    Article  Google Scholar 

  37. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite programming: Theory, algorithms, and applications. International Series in Operations Research & Management Science, 27. Kluwer Academic Publishers, Boston, MA, (2000)

  38. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cicconet, F., Almeida, K.C.: Moment-SOS relaxation of the medium term hydrothermal dispatch problem. Electr. Power Energy Syst. 104, 124–133 (2019)

    Article  Google Scholar 

  40. Zhao, X., Fan, J.: A semidefinite method for tensor complementarity problems. Optim. Method. Softw. 34(4), 758–769 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nie, J.: The \(\cal{A} \)-truncated \(K\)-moment problem. Found. Comput. Math. 14(6), 1243–1276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Helton, J., Nie, J.: Semidefinte representation of convex sets. Math. Progr. Ser. A 122(1), 21–64 (2010)

    Article  MATH  Google Scholar 

  43. Nie, J., Yang, Z., Zhang, X.: A complete semidefinite algorithm for detecting copositive matrices and tensors. SIAM J. Optim. 28(4), 2902–2921 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lasserre, J.B.: Convex sets with semidefinite representation. Math. Program. 120(2), 457–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nie, J., Zhao, J.: The split feasibility problem with polynomials. Sci. Sinica Math. 51(3), 425–438 (2021). (in Chinese)

  46. Hall, M., Newman, M.: Copositive and completely positive quadratic forms. Math. Proc. Cambridge Philos. Soc. 59, 329–333 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hoffman, A., Pereira, F.: On copositive matrices with -1, 0, 1 entries. J. Combin. Theory Ser. A 14, 302–309 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  48. Helton, J., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Blekherman, G., Parrilo, P., Thomas, R.: (Eds.). Semidefinite optimization and convex algebraic geometry, MOS-SIAM Series on Optimization, 13. SIAM, (2013)

  51. Reznick, B.: Some concrete aspects of Hilbert’s \(17^{th}\) problem. Contemp. Math. Am. Math. Soc. 253, 251–272 (2000)

    Article  MATH  Google Scholar 

  52. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nie, J.: Certifying convergence of lasserre’s hierarchy via flat truncation. Math. Progr. Ser. A 142(1–2), 485–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math. Progr. Ser. A. 146, 97–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. (2008) http://homepages.laas.fr/henrion/software/gloptipoly3

  56. Pólik, I.: Addendum to the SeDuMi user guide version 1.1. (2005) http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads

  57. Sturm, J.: Using SeDuMi 1.02, A matlab Toolbox for optimizativer over smmetric cones. (2001) http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads

Download references

Author information

Authors and Affiliations

Authors

Contributions

In this paper, J.-L. Zhao is in charge of the semidefinite relaxation method for LCPs, NCPs and TCPs, theoretical analysis and paper writing. Y.-Y. Dai is in charge of the numerical experiments.

Corresponding author

Correspondence to Jin-Ling Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12171105, 11271206), and the Fundamental Research Funds for the Central Universities (No. FRF-DF-19-004).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JL., Dai, YY. A Semidefinite Relaxation Method for Linear and Nonlinear Complementarity Problems with Polynomials. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00491-3

Keywords

Mathematics Subject Classification

Navigation