Skip to main content
Log in

Optimal Portfolio and Consumption Rule with a CIR Model Under HARA Utility

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In the real-world environments, different individuals have different risk preferences. This paper investigates the optimal portfolio and consumption rule with a Cox–Ingersoll–Ross (CIR) model in a more general utility framework. After consumption, an individual invests his wealth into the financial market with one risk-free asset and multiple risky assets, where the short-term rate is driven by the CIR model and stock price dynamics are simultaneously influenced by random sources from both stochastic interest rate and stock market itself. The individual hopes to optimize their portfolios and consumption rules to maximize expected utility of terminal wealth and intermediate consumption. Risk preference of individual is assumed to satisfy hyperbolic absolute risk aversion (HARA) utility, which contains power utility, logarithm utility, and exponential utility as special cases. By using the principle of stochastic optimality and Legendre transform-dual theory, the explicit expressions of the optimal portfolio and consumption rule are obtained. The sensitivity of the optimal strategies to main parameters is analysed by a numerical example. In addition, economic implications are also presented. Our research results show that Legendre transform-dual theory is an effective methodology in dealing with the portfolio selection problems with HARA utility and interest rate risk can be completely hedged by constructing specific portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  2. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3(4), 373–413 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, G.L., Shreve, S.E.: A duality method for optimal consumption and investment under short-selling prohibition. I. General market coefficients. Ann. Appl. Probab. 2(1), 87–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fleming, W.H., Pang, T.: An application of stochastic control theory to financial economics. SIAM J. Control Optim. 43(2), 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Munk, C., Sørensen, C.: Optimal consumption and investment strategies with stochastic interest rates. J. Bank. Financ. 28(8), 1987–2013 (2004)

    Article  Google Scholar 

  6. Fleming, W.H., Hernandez-Hernandez, D.: An optimal consumption model with stochastic volatility. Financ. Stoch. 7(2), 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chacko, G., Viceira, L.M.: Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets. Rev. Financ. Stud. 18(4), 1369–1402 (2005)

    Article  Google Scholar 

  8. Sotomayor, L.R., Cadenillas, A.: Explicit solutions of consumption-investment problems in financial markets with regime switching. Math. Financ. 19(2), 251–279 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, H., Rong, X.M., Zhao, H., Zhang, C.B.: Optimal investment and consumption decisions under the constant elasticity of variance model. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/974098

    MathSciNet  MATH  Google Scholar 

  10. Zeng, Y., Wu, H.L., Lai, Y.Z.: Optimal investment and consumption strategies with state-dependent utility functions and uncertain time-horizon. Econ. Model. 33, 462–470 (2013)

    Article  Google Scholar 

  11. Liu, J.: Portfolio selection in stochastic environments. Rev. Financ. Stud. 20(1), 1–39 (2007)

    Article  Google Scholar 

  12. Noh, E.J., Kim, J.H.: An optimal portfolio model with stochastic volatility and stochastic interest rate. J. Math. Anal. Appl. 375(2), 510–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekeland, I., Pirvu, T.A.: Investment and consumption without commitment. Math. Financ. Econ. 2(1), 57–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pirvu, T.A., Zhang, H.: Investment-consumption with regime-switching discount rates. Math. Soc. Sci. 71(5), 142–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, Q., Shen, Y., Wei, J.Q.: Consumption-investment strategies with non-exponential discounting and logarithmic utility. Eur. J. Oper. Res. 238, 824–835 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zou, Z.R., Chen, S., Wedge, L.: Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting. J. Math. Econ. 52(1), 70–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grasselli, M.: A stability result for the HARA class with stochastic interest rates. Insur. Math. Econ. 33(3), 611–627 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jung, E.J., Kim, J.H.: Optimal investment strategies for the HARA utility under the constant elasticity of variance model. Insur. Math. Econ. 51(1), 667–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chang, H., Chang, K., Lu, J.M.: Portfolio selection with liability and affine interest rate in the HARA utility framework. Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/312640

    MathSciNet  Google Scholar 

  20. Jonsson, M., Sircar, R.: Optimal investment problems and volatility homogenization approximations. In: Modern Methods in Scientific Computing and Applications NATO Science Series II, vol. 75, pp. 255–281. Springer, Germany (2002)

  21. Xiao, J.W., Zhai, H., Qin, C.L.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts. Insur. Math. Econ. 40(2), 302–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, J.W.: Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model. Insur. Math. Econ. 45(1), 9–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, J.W.: An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts. Insur. Math. Econ. 46(3), 511–530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karatzas, I., Lehoczky, J.P., Shreve, S.E., et al.: Martingale and duality methods for utility maximization in a incomplete market. SIAM J. Control Optim. 29(3), 702–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanton, R.: A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Financ. 52(5), 1973–2002 (1997)

    Article  Google Scholar 

  26. Grzelak, L., Oosterlee, K.: On the Heston model with stochastic interest rates. SIAM J. Financ. Math. 2(1), 255–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hainaut, D.: A fractal version of the Hull–White interest rate model. Econ. Model. 31(2), 323–334 (2013)

    Article  Google Scholar 

  28. Boulier, J.F., Huang, S.J., Taillard, G.: Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund. Insur. Math. Econ. 28(1), 173–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Deelstra, G., Grasselli, M., Koehl, P.F.: Optimal investment strategies in the presence of a minimum guarantee. Insur. Math. Econ. 33(1), 189–207 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ferland, R., Watier, F.: Mean-variance efficiency with extended CIR interest rates. Appl. Stoch. Models Bus. Ind. 26(1), 71–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, Y., Siu, T.K.: Asset allocation under stochastic interest rate with regime switching. Econ. Model. 29(4), 1126–1136 (2012)

    Article  Google Scholar 

  32. Li, D.P., Rong, X.M., Zhao, H.: Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk. Insur. Math. Econ. 64(1), 28–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, H.X., Li, Z.F., Li, D.: Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability. Eur. J. Oper. Res. 252(3), 837–851 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hunter, J., Wu, F.: Multifactor consumption based asset pricing models using the US stock market as a reference: evidence from a panel of developed economies. Econ. Model. 36, 557–565 (2014)

    Article  Google Scholar 

  35. Chen, G.J., Hong, Z.W., Ren, Y.: Durable consumption and asset returns: cointegration analysis. Econ. Model. 53, 231–244 (2016)

    Article  Google Scholar 

  36. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–408 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yong, J., Zhou, X.Y.: Stochastic Control: Hamiltonian Systems and HJB Equations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  38. Cox, J.C., Huang, C.F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49(1), 33–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chang.

Additional information

This paper is dedicated to Professor Duan Li in celebration of his 65th birthday.

This research is supported by National Natural Science Foundation of China (No. 71671122), China Postdoctoral Science Foundation Funded Project (Nos. 2014M560185 and 2016T90203), Humanities and Social Science Research Fund of Ministry of Education of China (Nos. 11YJC790006 and 16YJA790004) and Tianjin Natural Science Foundation of China (No. 15JCQNJC04000).

Appendix

Appendix

(A1) Proof of Lemma 4.1 Introducing the following variational operator on any function f(tr):

$$\begin{aligned} \begin{aligned} \nabla f(t,r)&=\left( {\frac{1}{p-1}\beta -\frac{p}{p-1}r+\frac{p}{2(p-1)^2}\left( \left\| {\lambda _s } \right\| ^2+\lambda _r^2 r\right) } \right) f\\&\quad +\left( {a+\frac{p}{p-1}k\lambda _r r-br} \right) f_r +\frac{1}{2}k^2rf_{rr}, \end{aligned} \end{aligned}$$

we can rewrite Eq. (4.5) as

$$\begin{aligned} \frac{\partial f(t,r)}{\partial t}+\nabla f(t,r)+\left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}=0, \quad f(T,r)=1. \end{aligned}$$
(a1)

In fact, according to \(f(t,r)=\left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}\int _t^{T} {{\hat{f}}(s,r)\hbox {d}s} +{\hat{f}}(t,r)\), we have

$$\begin{aligned} \frac{\partial f(t,r)}{\partial t}= & {} -\left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}{\hat{f}}(t,r)+\frac{\partial \hat{f}(t,r)}{\partial t}\nonumber \\= & {} \left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}\left( {\int _t^{T} {\frac{\partial {\hat{f}}(s,r)}{\partial s}\hbox {d}s} -{\hat{f}}(T,r)} \right) +\frac{\partial {\hat{f}}(t,r)}{\partial t}, \end{aligned}$$
(a2)
$$\begin{aligned} \nabla f(t,r)= & {} \left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}\int _t^{T} {\nabla {\hat{f}}(s,r)\hbox {d}s} +\nabla \hat{f}(t,r). \end{aligned}$$
(a3)

Putting (a2) and (a3) into (a1), we obtain

$$\begin{aligned}&\left( {\frac{\alpha }{1-\alpha }} \right) ^{-\frac{1}{p-1}}\left( {\int _t^{T} {\left( {\frac{\partial {\hat{f}}(s,r)}{\partial s}+\nabla {\hat{f}}(s,r)} \right) \hbox {d}s} -{\hat{f}}(T,r)+1} \right) \nonumber \\&\qquad +\frac{\partial {\hat{f}}(t,r)}{\partial t}+\nabla {\hat{f}}(t,r)=0. \end{aligned}$$
(a4)

Comparing the coefficients on both sides of (a4), we get

$$\begin{aligned} \frac{\partial {\hat{f}}(t,r)}{\partial t}+\nabla {\hat{f}}(t,r)=0, \quad {\hat{f}}(T,r)=1. \end{aligned}$$
(a5)

Therefore, Eq. (4.7) holds.

(A2) Proof of Lemma 4.2 Substituting \({\hat{f}}(t,r)=\hbox {e}^{D_1 (t)+D_2 (t)r}\) back into (4.7) and separating the variables, we arrive at the following two ODEs:

$$\begin{aligned}&{\dot{D}}_2 (t)+\frac{p}{2(p-1)^2}\lambda _r^2 -\frac{p}{p-1}+\left( {\frac{p}{p-1}k\lambda _r -b} \right) D_2 (t)\nonumber \\&\qquad +\frac{1}{2}k^2D_2^2 (t)=0, \quad D_2 (T)=0; \end{aligned}$$
(a6)
$$\begin{aligned}&{\dot{D}}_1 (t)+\frac{1}{p-1}\beta +\frac{p}{2(p-1)^2}\left\| {\lambda _s } \right\| ^2+aD_2 (t)=0, \quad D_1 (T)=0. \end{aligned}$$
(a7)

By investigating the following quadratic equation:

$$\begin{aligned} -\frac{1}{2}k^2D_2^2 (t)-\left( {\frac{p}{p-1}k\lambda _r -b} \right) D_2 (t)-\left( {\frac{p}{2(p-1)^2}\lambda _r^2 -\frac{p}{p-1}} \right) =0, \end{aligned}$$
(a8)

we get its discriminant:

$$\begin{aligned} \Delta _1 =\frac{p}{p-1}\left( {(k\lambda _r -b)^2+2k^2-\frac{1}{p}b^2} \right) . \end{aligned}$$
(a9)
  1. (i)

    If \(0<p<1\) and \(p<\frac{b^2}{(k\lambda _r -b)^2+2k^2}\), i.e. \(0<p<\min \left\{ {\frac{b^2}{(k\lambda _r -b)^2+2k^2},\;1} \right\} \), we have \(\Delta _1 >0\); if \(p<0\), we have \(\Delta _1 >0\). To sum up, we obtain \(p<\min \left\{ {\frac{b^2}{(k\lambda _r -b)^2+2k^2},\;1} \right\} \) and \(p\ne 0\), we thus have \(\Delta _1 >0\).

    The two different roots of Eq. (a8) are given by

    $$\begin{aligned} m_{1,2} =\frac{\frac{p}{p-1}k\lambda _r -b}{-k^2}\pm \frac{\sqrt{\Delta _1 } }{-k^2}. \end{aligned}$$
    (a10)

    The solution to Eq. (a6) is derived as follows.

    $$\begin{aligned} \begin{aligned}&{\dot{D}}_2 (t)=-\frac{1}{2}k^2D_2^2 (t)-\left( {\frac{p}{p-1}k\lambda _r -b} \right) D_2 (t)-\left( {\frac{p}{2(p-1)^2}\lambda _r^2 -\frac{p}{p-1}} \right) \\&\quad \Rightarrow {\dot{D}}_2 (t)=-\frac{1}{2}k^2(D_2 (t)-m_1 )(D_2 (t)-m_2 )\\&\quad \Rightarrow \frac{1}{m_1 -m_2 }\int _t^{T} {\left( {\frac{1}{D_2 (t)-m_1 }-\frac{1}{D_2 (t)-m_2 }} \right) } \hbox {d}D_2 (t)=-\frac{1}{2}k^2(T-t). \end{aligned} \end{aligned}$$

    Solving the above integration, we obtain (4.8). Further, plugging (4.8) into Eq. (a7), we have (4.9).

  2. (ii)

    If \(p=\frac{b^2}{(k\lambda _r -b)^2+2k^2}\) and \(p<1\), we have \(\Delta _1 =0\). Then, the unique root of (a8) is given by

    $$\begin{aligned} m_3 =\frac{\frac{p}{p-1}k\lambda _r -b}{-k^2}. \end{aligned}$$
    (a11)

    We derive the following process to solve Eq. (a6):

    $$\begin{aligned} \begin{aligned}&{\dot{D}}_2 (t)=-\frac{1}{2}k^2(D_2 (t)-m_3 )^2\\&\quad \Rightarrow \int _t^{T} {\frac{1}{(D_2 (t)-m_3 )^2}\mathrm{d}D_2 (t)} =-\frac{1}{2}k^2(T-t). \end{aligned} \end{aligned}$$

    Solving the above integration yields (4.10). Putting (4.10) in Eq. (a7), we get (4.11).

  3. (iii)

    If \(\frac{b^2}{(k\lambda _r -b)^2+2k^2}<p<1\), we have \(\Delta _1 <0\). Then, for Eq. (a6), we adopt the following solving technique:

    $$\begin{aligned} \begin{aligned}&{\dot{D}}_2 (t)=-\frac{1}{2}k^2D_2^2 (t)-\left( {\frac{p}{p-1}k\lambda _r -b} \right) D_2 (t)-\left( {\frac{p}{2(p-1)^2}\lambda _r^2 -\frac{p}{p-1}} \right) \\&\quad \Rightarrow {\dot{D}}_2 (t)=-\frac{1}{2}k^2\left( {\left( {D_2 (t)-m_3 } \right) ^2+\frac{-\Delta _1 }{k^4}} \right) \\&\quad \Rightarrow \int _t^{T} {\frac{1}{\frac{\sqrt{-\Delta _1 } }{k^2}\left( {\left( {\frac{k^2}{\sqrt{-\Delta _1 } }\left( {D_2 (t)-m_3 } \right) } \right) ^2+1} \right) }\mathrm{d}\left( {\frac{k^2}{\sqrt{-\Delta _1 } }\left( {D_2 (t)-m_3 } \right) } \right) }\\&\quad =-\frac{1}{2}k^2\left( {T-t} \right) . \end{aligned} \end{aligned}$$

    Therefore, we obtain (4.12). Further, we have (4.13). Thus, the proof is completed.

(A3) Proof of Lemma 4.4 Plugging \({\hat{h}}(t,r)=\hbox {e}^{D_3 (t)+D_4 (t)r}\) into Eq. (4.14) and separating the variables, we get

$$\begin{aligned}&{\dot{D}}_4 (t)-1+(k\lambda _r -b)D_4 (t)+\frac{1}{2}k^2D_4^2 (t)=0, \quad D_4 (T)=0; \end{aligned}$$
(a12)
$$\begin{aligned}&{\dot{D}}_3 (t)+aD_4 (t)=0, \quad D_3 (T)=0. \end{aligned}$$
(a13)

The discriminant for the quadratic equation \(-\frac{1}{2}k^2D_4^2 (t)-(k\lambda _r -b)D_4 (t)+1=0\) is given by \(\Delta _2 =(k\lambda _r -b)^2+2k^2>0\). So, the two different roots are represented as

$$\begin{aligned} m_{4,5} =\frac{k\lambda _r -b}{-k^2}\pm \frac{\sqrt{\Delta _2 } }{-k^2}. \end{aligned}$$
(a14)

By using the same technique as Lemma 4.2, we derive (4.15) and (4.16).

Therefore, we easily complete the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CF., Chang, H. & Fang, ZM. Optimal Portfolio and Consumption Rule with a CIR Model Under HARA Utility. J. Oper. Res. Soc. China 6, 107–137 (2018). https://doi.org/10.1007/s40305-017-0189-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-017-0189-8

Keywords

Mathematics Subject Classification

Navigation