Skip to main content
Log in

Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this article, we study a robust estimation method for a general class of integer-valued time series models. The conditional distribution of the process belongs to a broad class of distributions and unlike the classical autoregressive framework, the conditional mean of the process also depends on some exogenous covariates. We derive a robust inference procedure based on the minimum density power divergence. Under certain regularity conditions, we establish that the proposed estimator is consistent and asymptotically normal. In the case where the conditional distribution belongs to the exponential family, we provide sufficient conditions for the existence of a stationary and ergodic \(\tau \)-weakly dependent solution. Simulation experiments are conducted to illustrate the empirical performances of the estimator. An application to the number of transactions per minute for the stock Ericsson B is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agosto, A., Cavaliere, G., Kristensen, D., Rahbek, A.: Modeling corporate defaults: poisson autoregressions with exogenous covariates (parx). J. Empir. Financ. 38, 640–663 (2016)

    Article  Google Scholar 

  2. Ahmad, A., Francq, C.: Poisson qmle of count time series models. J. Time Ser. Anal. 37(3), 291–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aknouche, A., Francq, C.: Count and duration time series with equal conditional stochastic and mean orders. Econom. Theory 37(2), 248–280 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al-Osh, M.A., Alzaid, A.A.: First-order integer-valued autoregressive (inar (1)) process. J. Time Ser. Anal. 8(3), 261–275 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alzaid, A., Al-Osh, M.: An integer-valued pth-order autoregressive structure (inar (p)) process. J. Appl. Probab. 27(2), 314–324 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, Donald, W.K.: Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 69(3), 683–734 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85(3), 549–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Basu, A., Lindsay, B.G.: Minimum disparity estimation for continuous models: efficiency, distributions and robustness. Ann. Inst. Stat. Math. 46(4), 683–705 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belhaj, F., Abaoub, E., Mahjoubi, M.N.: Number of transactions, trade size and the volume-volatility relationship: an interday and intraday analysis on the tunisian stock market. Int. Bus. Res. 8(6), 135 (2015)

    Article  Google Scholar 

  10. Beran, R.: Minimum hellinger distance estimates for parametric models. Ann. Stat. (1977). https://doi.org/10.1214/aos/1176343842

    Article  MathSciNet  MATH  Google Scholar 

  11. Brännäs, K., Shahiduzzaman Quoreshi, A.: Integer-valued moving average modelling of the number of transactions in stocks. Appl. Financ. Econ. 20(18), 1429–1440 (2010)

    Article  Google Scholar 

  12. Chen, H., Li, Q., Zhu, F.: A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation. AStA Adv. Stat. Anal. 106(2), 243–270 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, D.R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P., Juselius, K., Lauritzen, S.L.: Statistical analysis of time series: Some recent developments [with discussion and reply]. Scand. J. Stat. 8(2), 93–115 (1981)

    Google Scholar 

  14. Cui, Y., Zheng, Q.: Conditional maximum likelihood estimation for a class of observation-driven time series models for count data. Stat. & Probab. Lett. 123, 193–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, R.A., Liu, H.: Theory and inference for a class of nonlinear models with application to time series of counts. Stat. Sin. 26(4), 1673–1707 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Davis, R.A., Wu, R.: A negative binomial model for time series of counts. Biometrika 96(3), 735–749 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diop, M.L., Kengne, W.: Testing parameter change in general integer-valued time series. J. Time Ser. Anal. 38(6), 880–894 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diop, M.L., Kengne, W.: Piecewise autoregression for general integer-valued time series. J. Stat. Plan. Inference 211, 271–286 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diop, M.L., Kengne, W.: Poisson qmle for change-point detection in general integer-valued time series models. Metrika 85(3), 373–403 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Doukhan, P., Fokianos, K., Tjøstheim, D.: On weak dependence conditions for poisson autoregressions. Stat. & Probab. Lett. 82(5), 942–948 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Doukhan, P., Fokianos, K., Tjøstheim, D., et al.: Correction to “on weak dependence conditions for poisson autoregressions”. [statist. probab. lett. 82, 942–948 (2012)]. Stat. Probab. Lett. 83(8), 1926–1927 (2013)

  22. Doukhan, P., Fokianos, K., Tjøstheim, D., et al.: Correction to “on weak dependence conditions for poisson autoregressions’’. Stat. & Probab. Lett. 83(8), 1926–1927 (2013)

    Article  MATH  Google Scholar 

  23. Doukhan, P., Kengne, W.: Inference and testing for structural change in general poisson autoregressive models. Electron. J. Stat. 9, 1267–1314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Doukhan, P., Wintenberger, O.: Weakly dependent chains with infinite memory. Stoch. Process. Appl. 118(11), 1997–2013 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elsaied, H., Fried, R.: Robust fitting of inarch models. J. Time Ser. Anal. 35(6), 517–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fokianos, K., Fried, R.: Interventions in ingarch processes. J. Time Ser. Anal. 31(3), 210–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fokianos, K., Fried, R.: Interventions in log-linear poisson autoregression. Stat. Model. 12(4), 299–322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fokianos, K., Neumann, M.H.: A goodness-of-fit test for poisson count processes. Electron. J. Stat. 7, 793–819 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fokianos, K., Rahbek, A., Tjøstheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104(488), 1430–1439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fokianos, K., Støve, B., Tjøstheim, D., Doukhan, P.: Multivariate count autoregression. Bernoulli 26(1), 471–499 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fokianos, K., Truquet, L.: On categorical time series models with covariates. Stoch. Process. Appl. 129(9), 3446–3462 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Francq, C., et al.: Qml inference for volatility models with covariates. Econom. Theor. 35(1), 37–72 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fried, R., Agueusop, I., Bornkamp, B., Fokianos, K., Fruth, J., Ickstadt, K.: Retrospective bayesian outlier detection in ingarch series. Stat. Comput. 25(2), 365–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kang, J., Lee, S.: Parameter change test for poisson autoregressive models. Scand. J. Stat. 41(4), 1136–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kedem, B., Fokianos, K.: Regression models for time series analysis. Hoboken, Wiley, NJ (2002)

    Book  MATH  Google Scholar 

  36. Kim, B., Lee, S.: Robust estimation for zero-inflated poisson autoregressive models based on density power divergence. J. Stat. Comput. Simul. 87(15), 2981–2996 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, B., Lee, S.: Robust estimation for general integer-valued time series models. Ann. Inst. Stat. Math. 72(6), 1371–1396 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kim, B., Lee, S., Kim, D.: Robust estimation for bivariate poisson ingarch models. Entropy 23(3), 367 (2021)

    Article  MathSciNet  Google Scholar 

  39. Kounias, E.G., Weng, T.S.: An inequality and almost sure convergence. Ann. Math. Stat. 40(3), 1091–1093 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liboschik, T., Fokianos, K., Fried, R.: tscount: An r package for analysis of count time series following generalized linear models. J. Stat. Softw. 82, 1–51 (2017)

    Article  Google Scholar 

  41. Louhichi, W.: What drives the volume-volatility relationship on euronext paris? Int. Rev. Financ. Anal. 20(4), 200–206 (2011)

    Article  Google Scholar 

  42. McKenzie, E.: Some simple models for discrete variate time series 1. JAWRA J. Am. Water Resour. Assoc. 21(4), 645–650 (1985)

    Article  Google Scholar 

  43. Pedersen, R.S., Rahbek, A.: Testing garch-x type models. Econom. Theor. 35(5), 1012–1047 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simpson, D.G.: Minimum hellinger distance estimation for the analysis of count data. J. Am. Stat. Assoc. 82(399), 802–807 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takaishi, T., Chen, T.T.: The relationship between trading volumes, number of transactions, and stock volatility in garch models. In: Journal of physics: conference series, vol. 738, p. 012097. IOP Publishing (2016)

  46. Tamura, R.N., Boos, D.D.: Minimum hellinger distance estimation for multivariate location and covariance. J. Am. Stat. Assoc. 81(393), 223–229 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Warwick, J., Jones, M.: Choosing a robustness tuning parameter. J. Stat. Comput. Simul. 75(7), 581–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiong, L., Zhu, F.: Robust quasi-likelihood estimation for the negative binomial integer-valued garch (1, 1) model with an application to transaction counts. J. Stat. Plan. Inference 203, 178–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiong, L., Zhu, F.: Minimum density power divergence estimator for negative binomial integer-valued garch models. Commun. Math. Stat. 10, 233–261 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous Referees for many relevant suggestions and comments which helped to improve the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Kengne.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Mamadou Lamine Diop supported by the MME-DII center of excellence (ANR-11-LABEX-0023-01) and the ANR BREAKRISK: ANR-17-CE26-0001-01.

William Kengne developed within the CY Initiative of Excellence (grant “Investissements d’Avenir” ANR-16-IDEX-0008), Project “EcoDep” PSI-AAP2020-0000000013.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, M.L., Kengne, W. Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates. Commun. Math. Stat. (2023). https://doi.org/10.1007/s40304-023-00351-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40304-023-00351-9

Keywords

Mathematics Subject Classification

Navigation