Skip to main content
Log in

Pointwise Second-Order Necessary Conditions for Stochastic Optimal Control with Jump Diffusions

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we establish a second-order necessary conditions for stochastic optimal control for jump diffusions. The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion. The control domain is assumed to be convex. Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved. The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnans, J.F., Silva, F.J.: First and second order necessary conditions for stochastic optimal control problems. Appl. Math. Optim. 65(3), 403–439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchard, B., Elie, R.: Discrete time approximation of decoupled forward-backward SDE with jumps. Stoch. Process. Appl. 118, 53–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cadenillas, A.: A stochastic maximum principle for systems with jumps, with applications to finance. Syst. Control Lett. 47(5), 433–444 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cadenillas, A., Haussmann, U.G.: The stochastic maximum principle for a singular control problem. Stoch. Int. J. Probab. Stoch. Process. 49(3–4), 211–237 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Deepa, R., Muthukumar, P.: Infinite horizon optimal control of mean-field delay system with semi-Markov modulated jump-diffusion processes. J. Anal. 1–19 (2018)

  6. Dong, Y., Meng, Q.X.: Second-order necessary conditions for optimal control with recursive utilities. Optim. Theory Appl. 182(2), 494–524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Framstad, N.C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory Appl. 121, 77–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frankowska, H., Tonon, D.: Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints. Siam J. Control Optim. 51(5), 3814–3843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frankowska, H., Zhang, H., Zhang, X.: Necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints. Trans. Am. Math. Soc. 372(2), 1289–1331 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabasov, R., Kirillova, F.: High order necessary conditions for optimality. Siam J. Control Optim. 10(1), 127–168 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hafayed, M.: A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes. Int. J. Dyn. Control 1(4), 300–315 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hafayed, M., Abbas, S.: Stochastic near-optimal singular controls for jump diffusions: necessary and sufficient conditions. J. Dyn. Control Syst. 19(4), 503–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haussmann, U.G., Suo, W.: Singular optimal control I. II. Siam J. Control Optim. 33(3), 916–936 (1995)

    Article  MATH  Google Scholar 

  14. Meng, Q.: General linear quadratic optimal stochastic control problem driven by a Brownian motion and a Poisson random martingale measure with random coefficients. Stoch. Anal. Appl. 32(1), 88–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meng, Q., Shen, Y.: Optimal control of mean-field jump-diffusion systems with delay: a stochastic maximum principle approach. J. Comput. Appl. Math. 279, 13–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Peng, S.: A general stochastic maximum principle for optimal control problems. Siam J. Control Optim. 28(4), 966–979 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rishel, R.: A Minimum Principle for Controlled Jump Processes. Lecture Notes in Economics and Mathematical Systems, vol. 107, pp. 493–508. Springer, Berlin (1975)

  19. Shen, Y., Meng, Q., Shi, P.: Maximum principle for mean-field jump diffusion stochastic delay differential equations and its application to finance. Automatica 50(6), 1565–1579 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, J., Wu, Z.: Maximum principle for forward-backward stochastic control system with random jumps and application to finance. J. Syst. Sci. Complex. 23, 219–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Situ, R.: A maximum principle for optimal controls of stochastic with random jumps. In: Proceedings of National Conference on Control Theory and its Applications, Qingdao, China (1991)

  22. Tang, S.: A second order maximum principle for singular optimal stochastic controls. Dyn. Syst. Ser. B 4(4), 1581–1599 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. Siam J. Control Optim. 32(5), 1447–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tang, M., Meng, Q.X.: Stochastic evolution equations of jump type with random coefficients: existence, uniqueness and optimal control. Sci. China Inf. Sci. 60, 118–202 (2017)

    Article  Google Scholar 

  25. Tang, M., Meng, Q.: Linear-quadratic optimal control problems for mean-field stochastic differential equations with jumps. Asian J. Control 21(2), 809–823 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao, H., Wang, G.: The filtering equations of forward-backward stochastic systems with random jumps and applications to partial information stochastic optimal control. Stoch. Anal. Appl. 28, 1003–1019 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Zhang, X.: Pointwise second-order necessary conditions for stochastic optimal controls. Part I: the case of convex control constraint. Siam J. Control Optim. 53(4), 2267–2296 (2015)

  28. Zhang, H., Zhang, X.: Pointwise second-order necessary conditions for stochastic optimal controls, Part II: the general case. Siam J. Control Optim. 55(5), 2841–2875 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Elliott, R.J., Siu, T.K.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. Siam J. Control Optim. 50(2), 964–990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to the associate editor and the anonymous referees for their constructive corrections and suggestions, which helped us improve the manuscript considerably

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Hafayed.

Appendix

Appendix

The following result gives special case of the Itô formula for jump diffusions.

Lemma A.1

(Integration by parts formula for jumps processes) Suppose that the processes \(x_{i}(t)\) are given by: for \(i=1,2,\) \(t\in \left[ 0,T\right] :\)

$$\begin{aligned} \left\{ \begin{array}{l} dx_{i}(t)=b\left( t,x_{i}(t),u(t)\right) dt+\sigma \left( t,x_{i}(t),u(t)\right) dW(t)\\ +\int _{Z}\eta \left( t,x_{i}(t_{-}),z\right) {\widetilde{N}}\left( \mathrm{d}z,\mathrm{d}t\right) ,\\ x_{i}(0)=0. \end{array} \right. \end{aligned}$$

Then, we get

$$\begin{aligned} {\mathbb {E}}\left( x_{1}(T)x_{2}(T)\right)&={\mathbb {E}}\left[ \int _{0}^{T}x_{1}(t)\mathrm{d}x_{2}(t)+\int _{0}^{T}x_{2}(t)\mathrm{d}x_{1}(t)\right] \\&\quad +{\mathbb {E}}\int _{0}^{T}\sigma ^{\intercal }\left( t,x_{1}(t),u(t)\right) \sigma \left( t,x_{2}(t),u(t)\right) \mathrm{d}t \\&\quad +{\mathbb {E}}\int _{0}^{T}\int _{Z}\eta ^{\intercal }\left( t,x_{1}(t),z\right) \eta \left( t,x_{2}(t),z\right) \mu (\mathrm{d}z)\mathrm{d}t. \end{aligned}$$

The proof can be performed as in Framstad et al. [7, Lemma 2.1] for the detailed proof of the above Lemma.

Proposition A.2

Let \({\mathcal {G}}\) be the predictable \( \sigma -\)field on \(\Omega \times \left[ 0,T\right] \), \(\mu (Z)<\infty \), and f be a \({\mathcal {G}}\times {\mathcal {B}}(Z)-\)measurable function such that.

$$\begin{aligned} {\mathbb {E}}\int _{0}^{T}\int _{Z}\left| f\left( s,z\right) \right| ^{2}\mu (\mathrm{d}z)\mathrm{d}s<\infty , \end{aligned}$$

then for all \(k\ge 2\), there exists a positive constant \(C_{(k,\mu (Z))}>0\) such that

$$\begin{aligned} {\mathbb {E}}\left[ \sup _{0\le t\le T}\left| \int _{0}^{t}\int _{Z}f\left( s,z\right) {\widetilde{N}}(\mathrm{d}z,\mathrm{d}s)\right| ^{k}\right] \le C_{(k,\mu (Z))} {\mathbb {E}}\left[ \int _{0}^{T}\int _{Z}\left| f\left( s,z\right) \right| ^{k}\mu (\mathrm{d}z)\mathrm{d}s\right] . \end{aligned}$$

Proof

See Bouchard et al. [2,  Appendix]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoul, A., Hafayed, M., Lakhdari, I.E. et al. Pointwise Second-Order Necessary Conditions for Stochastic Optimal Control with Jump Diffusions. Commun. Math. Stat. 11, 741–766 (2023). https://doi.org/10.1007/s40304-021-00272-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00272-5

Keywords

Mathematics Subject Classification

Navigation