Skip to main content
Log in

Minimum Density Power Divergence Estimator for Negative Binomial Integer-Valued GARCH Models

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we study a robust estimation method for the observation-driven integer-valued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial distribution. Maximum likelihood estimator is highly affected by the outliers. We resort to the minimum density power divergence estimator as a robust estimator and show that it is strongly consistent and asymptotically normal under some regularity conditions. Simulation results are provided to illustrate the performance of the estimator. An application is performed on data for campylobacteriosis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aeberhard, W.H., Cantoni, E., Heritier, S.: Robust inference in the negative binomial regression model with an application to falls data. Biometrics 70, 920–931 (2014)

    Article  MathSciNet  Google Scholar 

  2. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85, 549–559 (1998)

    Article  MathSciNet  Google Scholar 

  3. Billingsley, P.: The Lindeberg–Lévy theorem for martingales. Proc. Am. Math. Soc. 12, 788–792 (1961)

    MATH  Google Scholar 

  4. Cantoni, E., Ronchetti, E.M.: Robust inference for generalized linear models. J. Am. Stat. Assoc. 96, 1022–1030 (2001)

    Article  MathSciNet  Google Scholar 

  5. Chen, C.W.S., Lee, S.: Generalized Poisson autoregressive models for time series of counts. Comput. Stat. Data Anal. 99, 51–67 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Li, Q., Zhu, F.: Binomial AR(1) processes with innovational outliers. Commun. Stat. Theory Methods (2020). https://doi.org/10.1080/03610926.2019.1635704. (forthcoming)

    Article  Google Scholar 

  7. Christou, V., Fokianos, K.: Quasi-likelihood inference for negative binomial time series models. J. Time Ser. Anal. 35, 55–78 (2014)

    Article  MathSciNet  Google Scholar 

  8. Christou, V., Fokianos, K.: On count time series prediction. J. Stat. Comput. Simul. 85, 357–373 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cui, Y., Zheng, Q.: Conditional maximum likelihood estimation for a class of observation-driven time series models for count data. Stat. Probab. Lett. 123, 193–201 (2017)

    Article  MathSciNet  Google Scholar 

  10. Czado, C., Gneiting, T., Held, L.: Predictive model assessment for count data. Biometrics 65, 1254–1261 (2009)

    Article  MathSciNet  Google Scholar 

  11. Elsaied, H., Fried, R.: Robust fitting of INARCH models. J. Time Ser. Anal. 35, 517–535 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ferland, R., Latour, A., Qraichi, D.: Integer-valued GARCH process. J. Time Ser. Anal. 27, 923–942 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fokianos, K., Rahbek, A., Tjøstheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104, 1430–1439 (2009)

    Article  MathSciNet  Google Scholar 

  14. Francq, C., Zakoïan, J.M.: Maximum likelihood estimation of pure GARCH and ARMA–GARCH processes. Bernoulli 10, 605–637 (2004)

    Article  MathSciNet  Google Scholar 

  15. Fried, R., Agueusop, I., Bornkamp, B., Fokianos, K., Fruth, J., Ickstadt, K.: Retrospective Bayesian outlier detection in INGARCH series. Stat. Comput. 25, 365–374 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kang, J., Lee, S.: Minimum density power divergence estimator for Poisson autoregressive models. Comput. Stat. Data Anal. 80, 44–56 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kim, B., Lee, S.: Robust estimation for zero-inflated poisson autoregressive models based on density power divergence. J. Stat. Comput. Simul. 87, 2981–2996 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kim, B., Lee, S.: Robust estimation for general integer-valued time series models. Ann. Inst. Stat. Math. (2020). https://doi.org/10.1007/s10463-019-00728-0. (forthcoming)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kitromilidou, K., Fokianos, K.: Mallows’ quasi-likelihood estimation for log-linear Poisson autoregressions. Stat. Inference Stoch. Process. 19, 337–361 (2016)

    Article  MathSciNet  Google Scholar 

  20. Li, Q., Lian, H., Zhu, F.: Robust closed-form estimators for the integer-valued GARCH(1,1) model. Comput. Stat. Data Anal. 101, 209–225 (2016)

    Article  MathSciNet  Google Scholar 

  21. Liu, M., Li, Q., Zhu, F.: Threshold negative binomial autoregressive model. Statistics 53, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  22. Liu, Z., Li, Q., Zhu, F.: Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal. Braz. J. Probab. Stat. (2020). https://doi.org/10.1214/18-BJPS421. (forthcoming)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maji, A., Ghosh, A., Basu, A., Pardo, L.: Robust statistical inference based on the \(C\)-divergence family. Ann. Inst. Stat. Math. 71, 1289–1322 (2019)

    Article  MathSciNet  Google Scholar 

  24. Marazzi, A., Valdora, M., Yohai, V., Amiguet, M.: A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter. TEST 28, 223–241 (2019)

    Article  MathSciNet  Google Scholar 

  25. Qi, X., Li, Q., Zhu, F.: Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one inflated Poisson innovations. J. Comput. Appl. Math. 346, 572–590 (2019)

    Article  MathSciNet  Google Scholar 

  26. Scotto, M.G., Weiß, C.H., Gouveia, S.: Thinning-based models in the analysis of integer-valued time series: a review. Stat. Model. 15, 590–618 (2015)

    Article  MathSciNet  Google Scholar 

  27. Straumann, D., Mikosch, T.: Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann. Stat. 34, 2449–2495 (2006)

    Article  MathSciNet  Google Scholar 

  28. Toma, A., Broniatowski, M.: Dual divergence estimators and tests: robustness results. J. Multivar. Anal. 102, 20–36 (2011)

    Article  MathSciNet  Google Scholar 

  29. Valdora, M., Yohai, V.J.: Robust estimators for generalized linear models. J. Stat. Plan. Inference 146, 31–48 (2014)

    Article  MathSciNet  Google Scholar 

  30. Xiong, L., Zhu, F.: Robust quasi-likelihood estimation for the negative binomial integer-valued GARCH(1,1) model with an application to transaction counts. J. Stat. Plan. Inference 203, 178–198 (2019)

    Article  MathSciNet  Google Scholar 

  31. Yu, M., Wang, D., Yang, K., Liu, Y.: Bivariate first-order random coefficient integer-valued autoregressive processes. J. Stat. Plan. Inference 204, 153–176 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhang, C., Guo, X., Cheng, C., Zhang, Z.: Robust-BD estimation and inference for varying dimensional general linear models. Stat. Sin. 24, 653–673 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Zhu, F.: A negative binomial integer-valued GARCH model. J. Time Ser. Anal. 32, 54–67 (2011)

    Article  MathSciNet  Google Scholar 

  34. Zhu, F.: Modeling overdispersed or underdispersed count data with generalized Poisson integervalued GARCH models. J. Stat. Plan. Inference 389, 58–71 (2012a)

    MATH  Google Scholar 

  35. Zhu, F.: Zero-inflated Poisson and negative binomial integer-valued GARCH models. J. Math. Anal. Appl. 142, 826–839 (2012b)

    MathSciNet  MATH  Google Scholar 

  36. Zhu, F., Liu, S., Shi, L.: Local influence analysis for Poisson autoregression with an application to stock transaction data. Stat. Neerl. 70, 4–25 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to Editor and two anonymous referees for providing several exceptionally helpful comments which led to a significant improvement of the paper. Zhu’s work is supported by National Natural Science Foundation of China (Nos. 11871027, 11731015), Science and Technology Developing Plan of Jilin Province (No. 20170101057JC), and Cultivation Plan for Excellent Young Scholar Candidates of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukang Zhu.

Appendix

Appendix

In this appendix, we provide the proofs of Theorems 3.4 and 3.5 in Sect. 3. The following properties for the negative binomial distribution are useful for proving these two theorems. Based on Christou and Fokianos [7], for \(x\in \mathbb {N}_0\) and all \(\lambda >0\),

  1. (P1)

    \(0<P_{\theta }(x|\mathcal {F}_{t-1})<1\),

  2. (P2)

    \(\sum _{x=0}^{\infty }P_{\theta }(x|\mathcal {F}_{t-1})=1\),

  3. (P3)

    \(\sum _{x=0}^{\infty }xP_{\theta }(x|\mathcal {F}_{t-1})=\lambda \),

  4. (P4)

    \(\sum _{x=0}^{\infty }x^2P_{\theta }(x|\mathcal {F}_{t-1}) =(\sigma +1)\lambda ^2+\lambda \),

  5. (P5)

    \(\sum _{x=0}^{\infty }x^3P_{\theta }(x|\mathcal {F}_{t-1}) =(1+3\sigma +2\sigma ^2)\lambda ^3+3(1+\sigma )\lambda ^2+\lambda \),

where \(P_{\theta }(x|\mathcal {F}_{t-1})\) is defined by substituting \(X_t\) with x in \(P_{\theta }(X_t|\mathcal {F}_{t-1})\).

Lemma A.1

Under \((\mathrm{A}1){-}(\mathrm{A}3)\), we have

$$\begin{aligned} \sup _{\theta ^*\in \Theta ^*}|\lambda _t(\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)|\le V\rho ^t~a.s. \end{aligned}$$

Proof

From \((\mathrm{A}1),\) we have

$$\begin{aligned} |\lambda _t(\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)|\le k_2^{t-1}|\lambda _1(\theta ^*)-{\tilde{\lambda }}_1(\theta ^*)|, \end{aligned}$$

hence, the lemma is validated by \((\mathrm{A}3)\). \(\square \)

Lemma A.2

Under \((\mathrm{A}1){-}(\mathrm{A}3)\), we have

$$\begin{aligned} \sup _{\theta \in \Theta }\bigg |\frac{1}{n}\sum _{t=1}^{n}l_{\alpha ,t} (\theta )-\frac{1}{n}\sum _{t=1}^{n}\tilde{l}_{\alpha ,t}(\theta )\bigg |\rightarrow 0~a.s. \end{aligned}$$

Proof

It suffices to show that

$$\begin{aligned} \sup _{\theta \in \Theta }\left| l_{\alpha ,t}(\theta )-\tilde{l}_{\alpha ,t}(\theta )\right| \rightarrow 0~a.s. \end{aligned}$$

Note that \(\left| l_{\alpha ,t}(\theta )-\tilde{l}_{\alpha ,t}(\theta )\right| \le W_{1t}(\theta )+W_{2t}(\theta )\), where

$$\begin{aligned} W_{1t}(\theta )&=|m_{\alpha ,t,1}(\theta )-\tilde{m}_{\alpha ,t,1}(\theta )|\\&=\left| \sum \limits _{x=0}^{\infty }P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})-\sum \limits _{x=0}^{\infty }\tilde{P}_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\right| ,\\ W_{2t}(\theta )&=\left( 1+\frac{1}{\alpha }\right) |m_{\alpha ,t,2}(\theta )-\tilde{m}_{\alpha ,t,2}(\theta )|\\&=\left( 1+\frac{1}{\alpha }\right) \left| P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})-\tilde{P}_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\right| . \end{aligned}$$

According to the mean value theorem (MVT) and (P1)–(P3), it holds that

$$\begin{aligned} W_{1t}(\theta )&=(1+\alpha )|\lambda _t(\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)|\left| \sum \limits _{x=0}^{\infty }\bar{P}_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{1+\sigma \bar{\lambda }_t(\theta ^*)}\left( \frac{x}{\bar{\lambda }_t(\theta ^*)}-1\right) \right| \\&\le 2(1+\alpha )|\lambda _t(\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)|, \end{aligned}$$

for some intermediate point \(\bar{\lambda }_t(\theta ^*)\) between \(\lambda _t(\theta ^*)\) and \({\tilde{\lambda }}_t(\theta ^*)\), and \(\bar{P}_{\theta }(x|\mathcal {F}_{t-1})\) is defined by substituting \(\lambda _t(\theta ^*)\) with \(\bar{\lambda }_t(\theta ^*)\) in \(P_{\theta }(x|\mathcal {F}_{t-1})\). Hence,

$$\begin{aligned} \sup _{\theta \in \Theta }W_{1t}\le 2(1+\alpha )V\rho ^t\xrightarrow {a.s.}0~as~t\rightarrow \infty . \end{aligned}$$

Next, note that

$$\begin{aligned} W_{2t}(\theta )&=(1+\alpha )|\lambda _t(\theta ^*)-{\tilde{\lambda }}_t (\theta ^*)|\left| \sum \limits _{x=0}^{\infty }\bar{P}_{\theta }^{\alpha } (X_t|\mathcal {F}_{t-1})\frac{1}{1+\sigma \bar{\lambda }_t(\theta ^*)} \left( \frac{X_t}{\bar{\lambda }_t(\theta ^*)}-1\right) \right| \\&\le (1+\alpha )\left( \frac{X_t}{\delta _{L}}+1\right) |\lambda _t (\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)|. \end{aligned}$$

Thus,

$$\begin{aligned} \sup _{\theta \in \Theta }W_{2t}\le (1+\alpha ) \left( \frac{X_t}{\delta _{L}}+1\right) V\rho ^t, \end{aligned}$$

where \(\bar{P}_{\theta }(X_t|\mathcal {F}_{t-1})\) is defined by substituting x with \(X_t\) in \(\bar{P}_{\theta }(x|\mathcal {F}_{t-1})\). Since \(X_t\rho ^t\rightarrow 0~a.s.\) as \(t\rightarrow \infty \) (see Proposition 1 of Francq and Zakoïan [14]), \(\sup _{\theta \in \Theta }W_{2t}\) converges to 0 a.s. Therefore, the lemma is validated. \(\square \)

Lemma A.3

Under \((\mathrm{A}1){-}(\mathrm{A}4)\), we have

$$\begin{aligned} E\left( \sup _{\theta \in \Theta } l_{\alpha ,t}(\theta )\right) <\infty ~~and~~if~~ \theta \ne \theta _0,~~then~~ El_{\alpha ,t}(\theta )>E l_{\alpha ,t}(\theta _0). \end{aligned}$$

Proof

From \((\mathrm{P}1)\) and \((\mathrm{P}2)\), we obtain

$$\begin{aligned} \left| l_{\alpha ,t}(\theta )\right|&\le m_{\alpha ,t,1}(\theta )+\left( 1+\frac{1}{\alpha }\right) m_{\alpha ,t,2}(\theta )\\&=\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})+\left( 1+\frac{1}{\alpha }\right) P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1}) \le 2+\frac{1}{\alpha }, \end{aligned}$$

and thus the first part of the lemma is established.

Note that,

$$\begin{aligned}&E l_{\alpha ,t}(\theta )-E l_{\alpha ,t}(\theta _0)&\\&\quad =E\left[ E(l_{\alpha ,t}(\theta )-l_{\alpha ,t}(\theta _0)|\mathcal {F}_{t-1})\right] \\&\quad =E \left[ \sum _{x=0}^{\infty }\left( P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})-\left( 1+\frac{1}{\alpha }\right) P_{\theta }^{\alpha }(x|\mathcal {F}_{t-1})P_{\theta _0}(x|\mathcal {F}_{t-1})\right. \right. \\&\left. \left. \qquad +\frac{1}{\alpha }P_{\theta _0}^{1+\alpha }(x|\mathcal {F}_{t-1})\right) \right] \ge 0, \end{aligned}$$

where the equality holds if and only if \(\sigma =\sigma _0\) and \(\lambda _t(\theta ^*)=\lambda _t(\theta _0^*)~a.s.\) Therefore, by (A4) the lemma is proved. \(\square \)

Proof of Theorem 3.4

Express

$$\begin{aligned} \sup _{\theta \in \Theta }\left| \frac{1}{n}\sum _{t=1}^{n}\tilde{l}_{\alpha ,t}(\theta )-E l_{\alpha ,t}(\theta )\right|\le & {} \sup _{\theta \in \Theta }\left| \frac{1}{n}\sum _{t=1}^{n}\tilde{l}_{\alpha ,t} (\theta )-\frac{1}{n}\sum _{t=1}^{n}l_{\alpha ,t}(\theta )\right| \\&+\,\sup _{\theta \in \Theta }\left| \frac{1}{n}\sum _{t=1}^{n}l_{\alpha ,t} (\theta )-E l_{\alpha ,t}(\theta )\right| . \end{aligned}$$

The first term of the above inequality converges to 0 a.s. by Lemma lemma2A.2A. Since \(l_{\alpha ,t}(\theta )\) is stationary and ergodic and \(E \left( \sup _{\theta \in \Theta }l_{\alpha ,t}(\theta )\right) <\infty \), the second term also converges to 0 a.s. (see Theorem 2.7 of Straumann and Mikosch [27]). Further, \(E l_{\alpha ,t}(\theta )\) has a unique minimum at \(\theta _0\), therefore, the theorem is established.

Let

$$\begin{aligned} K_{\alpha ,t,1}(x;\theta )=\frac{\Gamma ^{'}(x+1/\sigma )}{\Gamma (1/\sigma )} -\frac{\Gamma ^{'}(1/\sigma )}{\Gamma (1/\sigma )} +\frac{\lambda _t(\theta ^*)-x}{\lambda _t(\theta ^*)+1/\sigma } -\ln (\sigma \lambda _t(\theta ^*)+1) \end{aligned}$$

with

$$\begin{aligned} \frac{\Gamma ^{'}(x+1/\sigma )}{\Gamma (1/\sigma )}-\frac{\Gamma ^{'}(1/\sigma )}{\Gamma (1/\sigma )}= {\left\{ \begin{array}{ll} \frac{1}{1/\sigma +x-1}+ \frac{1}{1/\sigma +x-2}+\cdots +\frac{1}{1/\sigma },&{}x=1,2,\ldots ,\\ 0,&{}x=0, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} K_{\alpha ,t,2}(x;\theta )= & {} \frac{\partial K_{\alpha ,t,1}(x;\theta )}{\partial (1/\sigma )}\\= & {} {\left\{ \begin{array}{ll} -\frac{1}{(1/\sigma +x-1)^2} -\frac{1}{(1/\sigma +x-2)^2} -\cdots -\frac{1}{(1/\sigma )^2}\\ -\frac{\lambda _t(\theta ^*)-x}{(1/\sigma +\lambda _t(\theta ^*))^2} +\frac{\lambda _t(\theta ^*)}{1/\sigma (1/\sigma +\lambda _t(\theta ^*))}, &{}x=1,2,\ldots ,\\ \frac{-\lambda _t(\theta ^*)}{(1/\sigma +\lambda _t(\theta ^*))^2} +\frac{\lambda _t(\theta ^*)}{1/\sigma (1/\sigma +\lambda _t(\theta ^*))},&{}x=0. \end{array}\right. } \end{aligned}$$

\(K_{\alpha ,t,1}(X_t;\theta )\) and \(K_{\alpha ,t,1}(X_t;\theta )\) are the counterparts of \(K_{\alpha ,t,1}(x;\theta )\) and \(K_{\alpha ,t,1}(x;\theta )\) substituting x with \(X_t\). Now, we derive the first and second derivatives of \(l_{\alpha ,t}(\theta )\). The first derivatives are as follows:

$$\begin{aligned} \frac{\partial l_{\alpha ,t}(\theta )}{\partial \theta }=\frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta }-\left( 1+\frac{1}{\alpha }\right) \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta } \end{aligned}$$

with

$$\begin{aligned} \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \sigma }&=-\frac{1+\alpha }{\sigma ^2}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})K_{\alpha ,t,1}(x;\theta ),\\ \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta ^*}&=\frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)} \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\\&=(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta )^*}\left( \frac{x}{\lambda _t(\theta ^*)}-1\right) \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*},\\ \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \sigma }&=-\frac{\alpha }{\sigma ^2} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})K_{\alpha ,t,1}(X_t;\theta ),\\ \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta ^*}&=\frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)} \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\\&=\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta )^*} \left( \frac{X_t}{\lambda _t(\theta ^*)}-1\right) \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}. \end{aligned}$$

The second derivatives which will be used in Lemmas A–A are obtained as follows:

$$\begin{aligned} \frac{\partial ^2 l_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^{\top }}=\frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \theta \partial \theta ^{\top }}-\left( 1+\frac{1}{\alpha }\right) \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \theta \partial \theta ^{\top }} \end{aligned}$$

with

$$\begin{aligned}&\frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \sigma ^2}=\frac{2(1+\alpha )}{\sigma ^3} \sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})K_{\alpha ,t,1}(x;\theta )-\frac{(1+\alpha )}{\sigma ^2}\\&\qquad \left[ -\frac{1+\alpha }{\sigma ^2} \sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})K_{\alpha ,t,1}^2(x;\theta ) -\frac{1}{\sigma ^2}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})K_{\alpha ,t,2}(x;\theta )\right] ,\\&\frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \theta ^*\partial {\theta ^*}^{\top }} =\frac{\partial ^2m_{\alpha ,t,1}(\theta )}{\partial \lambda _t^2(\theta ^*)} \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}+\frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)} \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\\&\qquad =(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left[ (1+\alpha )\left( \frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \frac{x}{\lambda _t(\theta ^*)}-1\right) \right) ^2 \right. \\&\qquad \left. -\,\frac{1}{(\sigma \lambda _t(\theta ^*)+1)^2}\left( \frac{x}{\lambda _t(\theta ^*)}-1\right) -\frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \frac{x}{\lambda _t(\theta ^*)^2} \right) \right] \frac{\partial \lambda _t (\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}\\&\qquad +\,(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1}) \frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \frac{x}{\lambda _t(\theta ^*)}-1\right) \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }},\\&\frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \sigma \partial \theta ^*} =\frac{\partial (\partial m_{\alpha ,t,1}(\theta )/\partial \sigma )}{\partial \theta ^*}=\frac{\partial (\partial m_{\alpha ,t,1}(\theta )/\partial \sigma )}{\partial \lambda _t(\theta ^*)} \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\\&\quad =\left[ -\frac{(1+\alpha )^2}{\sigma ^2}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha } (x|\mathcal {F}_{t-1})K_{\alpha ,t,1}(x;\theta )\frac{1}{\sigma \lambda _t(\theta ^*)+1}\right. \\&\qquad \quad \left. \left( \frac{x}{\lambda _t(\theta ^*)}-1\right) +(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left( \frac{x}{\lambda _t(\theta ^*)}-1\right) \right. \\&\qquad \quad \quad \left. \frac{-\lambda _t(\theta ^*)}{(\sigma \lambda _t(\theta ^*)+1)^2}\right] \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*},\\&\frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \sigma ^2}=\frac{2\alpha }{\sigma ^3} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})K_{\alpha ,t,1}(X_t;\theta )-\frac{\alpha }{\sigma ^2}\\&\qquad \quad \left[ -\frac{\alpha }{\sigma ^2} P_{\theta }^{\alpha }(X_t| \mathcal {F}_{t-1})K_{\alpha ,t,1}^2(X_t,\theta )-\frac{1}{\sigma ^2} P_{\theta }^{\alpha } (X_t|\mathcal {F}_{t-1})K_{\alpha ,t,2}(X_t;\theta )\right] ,\\&\frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \theta ^*\partial {\theta ^*}^{\top }}=\frac{\partial ^2m_{\alpha ,t,2}(\theta )}{\partial \lambda _t^2 (\theta ^*)}\frac{\partial \lambda _t (\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}+\frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)} \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\\&\quad =\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left[ \alpha \left( \frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \frac{X_t}{\lambda _t(\theta ^*)}-1\right) \right) ^2\right. \\&\qquad \left. -\,\frac{1}{(\sigma \lambda _t(\theta ^*)+1)^2}\left( \frac{X_t}{\lambda _t(\theta ^*)} -1\right) -\frac{1}{\sigma \lambda _t(\theta ^*)+1}\frac{X_t}{\lambda _t(\theta ^*)^2}\right] \\&\qquad \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}+\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta ^*) +1}\left( \frac{X_t}{\lambda _t(\theta ^*)}-1\right) \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }},\\&\frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \sigma \partial \theta ^*} =\frac{\partial (\partial m_{\alpha ,t,2}(\theta )/\partial \sigma )}{\partial \theta ^*} =\frac{\partial (\partial m_{\alpha ,t,2}(\theta )/\partial \sigma )}{\partial \lambda _t (\theta ^*)}\frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\\&\quad =\left[ -\frac{\alpha ^2}{\sigma ^2} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1}) K_{\alpha ,t,1}(X_t;\theta )\frac{1}{\sigma \lambda _t(\theta ^*)+1}\right. \left( \frac{X_t}{\lambda _t(\theta ^*)}-1\right) \\&\qquad \left. +\,\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left( \frac{X_t}{\lambda _t (\theta ^*)}-1\right) \frac{-\lambda _t(\theta ^*)}{(\sigma \lambda _t(\theta ^*)+1)^2}\right] \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}. \end{aligned}$$

\(\square \)

Lemma A.4

Under(A1)-(A3) and (P1)-(P4), we have

$$\begin{aligned} |K_{\alpha ,t,1}(x;\theta )|&\le \frac{x}{1/\sigma }+\frac{x}{1/\sigma +\lambda _t(\theta ^*)}+1+\sigma \lambda _t(\theta ^*),\\ |K_{\alpha ,t,2}(x;\theta )|&\le \frac{x}{(1/\sigma )^2}+\frac{\lambda _t(\theta ^*)}{(1/\sigma +\lambda _t(\theta ^*))^2}+\frac{x}{(1/\sigma +\lambda _t(\theta ^*))^2}+\sigma ,\\ \left| K_{\alpha ,t,1}(X_t;\theta )\right|&\le \frac{X_t}{1/\sigma }+\frac{X_t}{1/\sigma +\lambda _t(\theta ^*)}+1+\sigma \lambda _t(\theta ^*),\\ \left| K_{\alpha ,t,2}(X_t;\theta )\right|&\le \frac{X_t}{(1/\sigma )^2}+\frac{\lambda _t(\theta ^*)}{(1/\sigma +\lambda _t(\theta ^*))^2}+\frac{X_t}{(1/\sigma +\lambda _t(\theta ^*))^2}+\sigma ,\\ \left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \sigma }\right|&\le \frac{1+\alpha }{\sigma ^2}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(x;\theta )\right| \\&\le \frac{1+\alpha }{\sigma ^2}\left( \frac{\lambda _t(\theta ^*)}{(1/\sigma )^2}+\sigma \lambda _t(\theta ^*) +2\right) \\&\quad =(1+\alpha )\left( 1+\frac{1}{\sigma }\right) \lambda _t(\theta ^*)+\frac{2(1+\alpha )}{\sigma ^2},\\ \left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\right|&\le \frac{1+\alpha }{\sigma \lambda _t(\theta ^*)+1}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left( \frac{x}{\lambda _t(\theta ^*)}+1\right) \le \frac{2(1+\alpha )}{\sigma \lambda _t(\theta ^*)+1}\\&\quad \le 2(1+\alpha ),\\ \left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \sigma }\right|&\le \frac{\alpha }{\sigma ^2} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(X_t;\theta )\right| \le \frac{2\alpha }{\sigma }X_t+\frac{\alpha }{\sigma }\lambda _t(\theta ^*)+\frac{\alpha }{\sigma ^2},\\ \left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\right|&\le \frac{\alpha }{\sigma \lambda _t(\theta ^*)+1} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left( \frac{X_t}{\lambda _t(\theta ^*)}+1\right) \le \frac{\alpha }{\lambda _t(\theta ^*)}X_t+\alpha ,\\ \left| \frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \sigma ^2}\right|&\le \frac{2(1+\alpha )}{\sigma ^3} \sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(x;\theta )\right| \\&\quad +\frac{(1+\alpha )^2}{\sigma ^4}\sum _{x=0}^{\infty }P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(x;\theta )\right| ^2\\&\quad +\frac{1+\alpha }{\sigma ^4}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left| K_{\alpha ,t,2}(x;\theta )\right| \\&\le \frac{4(1+\alpha )}{\sigma ^2}\lambda _t(\theta *)+\frac{4(1+\alpha )}{\sigma ^3}+\frac{2(1+\alpha )^2(\sigma +2)}{\sigma ^2}\lambda _t^2(\theta *)\\&\quad +\frac{2(1+\alpha )^2}{\sigma ^2}\lambda _t(\theta *)+\frac{2(1+\alpha )^2}{\sigma ^3}+\frac{4(1+\alpha )^2}{\sigma ^4}+\frac{2(1+\alpha )^2}{\sigma ^4\lambda _t(\theta *)}\\&\quad +\frac{1+\alpha }{\sigma ^2}\lambda _t(\theta *)+\frac{1+\alpha }{\sigma ^3}+\frac{2(1+\alpha )}{\sigma ^4\lambda _t(\theta *)}\\&=2(1+\alpha )^2\left( \frac{1}{\sigma }+\frac{2}{\sigma ^2}\right) \lambda _t^2(\theta *)+\frac{(1+\alpha )(2\alpha +7)}{\sigma ^2}\lambda _t(\theta *)\\&\quad +\frac{(1+\alpha )(2\alpha +7)}{\sigma ^3}+\frac{4(1+\alpha )^2}{\sigma ^4}+\frac{(1+\alpha )(2\alpha +4)}{\sigma ^4\lambda _t(\theta *)},\\ \left| \frac{\partial ^2m_{\alpha ,t,1}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right|&\le (1+\alpha )^2\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \left( \frac{x}{\lambda _t(\theta ^*)}\right) ^2+1\right) \\&\quad +(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{(\sigma \lambda _t(\theta ^*)+1)^2}\left( \frac{x}{\lambda _t(\theta ^*)}+1\right) \\&\quad +(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta ^*)+1}\frac{x}{\lambda _t^2(\theta ^*)}\\&\le (1+\alpha )^2\left( \frac{1}{\lambda _t(\theta ^*)}+2\right) +2(1+\alpha )+\frac{1+\alpha }{\lambda _t(\theta ^*)}\\&=2(1+\alpha )(\alpha +2)+\frac{(1+\alpha )(\alpha +2)}{\lambda _t(\theta ^*)},\\ \left| \frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \sigma \partial \lambda _t(\theta ^*)}\right|&\le \frac{(1+\alpha )^2}{\sigma ^2}\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(x;\theta )\right| \frac{1}{\sigma \lambda _t(\theta ^*)+1}\\&\quad \left( \frac{x}{\lambda _t(\theta ^*)}+1\right) \\&\quad +(1+\alpha )\sum _{x=0}^{\infty } P_{\theta }^{1+\alpha }(x|\mathcal {F}_{t-1})\left( \frac{x}{\lambda _t(\theta ^*)}+1\right) \frac{\lambda _t(\theta ^*)}{(\sigma \lambda _t(\theta ^*)+1)^2}\\&\le \frac{(1+\alpha )^2}{\sigma ^2}\left( 3\sigma \lambda _t(\theta ^*)+\sigma +\frac{1}{1/\sigma +\lambda _t(\theta ^*)}+5\right) +2(1+\alpha )\lambda _t(\theta ^*)\\&\le \left( \frac{3(1+\alpha )^2}{\sigma ^2}+2(1+\alpha )\right) \lambda _t(\theta ^*)+\frac{2(1+\alpha )^2}{\sigma }+\frac{5(1+\alpha )^2}{\sigma ^2},\\ \left| \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \sigma ^2}\right|&\le \frac{2\alpha }{\sigma ^3} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(X_t;\theta )\right| +\frac{\alpha ^2}{\sigma ^4}P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\\&\quad \left| K_{\alpha ,t,1}(X_t;\theta )\right| ^2\\&\quad +\frac{\alpha }{\sigma ^4} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left| K_{\alpha ,t,2}(X_t;\theta )\right| \\&\le \left( \frac{4\alpha }{\sigma ^2}X_t+\frac{2\alpha }{\sigma ^2}\lambda _t(\theta *)+\frac{2\alpha }{\sigma ^3}\right) +\left( \frac{4\alpha ^2}{\sigma ^2}X_t^2+\frac{2\alpha ^2}{\sigma ^2}\lambda _t^2(\theta *)+\frac{2\alpha ^2}{\sigma ^4}\right) \\&\quad +\left( \frac{2\alpha }{\sigma ^2}X_t+\frac{\alpha }{\sigma ^3}+\frac{\alpha }{\sigma ^4\lambda _t(\theta *)}\right) \\&=\frac{4\alpha ^2}{\sigma ^2}X_t^2+\frac{6\alpha }{\sigma ^2}X_t+\frac{2\alpha ^2}{\sigma ^2}\lambda _t^2(\theta *)+\frac{2\alpha }{\sigma ^2}\lambda _t(\theta *)+\frac{3\alpha }{\sigma ^3}\\&\quad +\frac{2\alpha ^2}{\sigma ^4}+\frac{\alpha }{\sigma ^4\lambda _t(\theta *)},\\ \left| \frac{\partial ^2m_{\alpha ,t,2}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right|&\le \alpha ^2 P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \left( \frac{X_t}{\lambda _t(\theta ^*)}\right) ^2+1\right) \\&\quad +\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\frac{1}{(\sigma \lambda _t(\theta ^*)+1)^2}\left( \frac{X_t}{\lambda _t(\theta ^*)}+1\right) +\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\\&\quad \frac{1}{\sigma \lambda _t(\theta ^*)+1}\frac{X_t}{\lambda _t^2(\theta ^*)}\\&\le \left( \frac{\alpha ^2}{\lambda _t^2(\theta ^*)}X_t^2+\alpha ^2\right) +\left( \frac{\alpha }{\lambda _t(\theta ^*)}X_t+\alpha \right) +\left( \frac{\alpha }{\lambda _t^2(\theta ^*)}X_t\right) \\&=\frac{\alpha ^2}{\lambda _t^2(\theta ^*)}X_t^2+\left( \frac{\alpha }{\lambda _t(\theta ^*)}+\frac{\alpha }{\lambda _t^2(\theta ^*)}\right) X_t+\alpha ^2+\alpha ,\\ \left| \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \sigma \partial \lambda _t(\theta ^*)}\right|&\le \frac{\alpha ^2}{\sigma ^2} P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left| K_{\alpha ,t,1}(X_t;\theta )\right| \frac{1}{\sigma \lambda _t(\theta ^*)+1}\left( \frac{X_t}{\lambda _t(\theta ^*)}+1\right) \\&\quad +\alpha P_{\theta }^{\alpha }(X_t|\mathcal {F}_{t-1})\left( \frac{X_t}{\lambda _t(\theta ^*)}+1\right) \frac{\lambda _t(\theta ^*)}{(\sigma \lambda _t(\theta ^*)+1)^2}\\&\le \frac{\alpha ^2}{\sigma ^2}\left( \frac{2X_t^2}{1/\sigma \lambda _t(\theta ^*)}+3\sigma X_t+\frac{X_t}{\lambda _t(\theta ^*)}+\sigma \lambda _t(\theta ^*)+1\right) \\&\quad +\alpha \left( \frac{X_t}{\lambda _t(\theta ^*)}+1\right) \lambda _t(\theta ^*)\\&=\frac{2\alpha ^2}{\sigma \lambda _t(\theta ^*)}X_t^2+\left( \alpha +\frac{3\alpha ^2}{\sigma }+\frac{\alpha ^2}{\sigma ^2\lambda _t(\theta ^*)}\right) X_t+\left( \alpha +\frac{\alpha ^2}{\sigma }\right) \lambda _t(\theta ^*)\\&\quad +\frac{\alpha ^2}{\sigma ^2}. \end{aligned}$$

Note that owing to the MVT, we get

$$\begin{aligned} \left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \sigma }-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \sigma }\right|&\le \left| \frac{\partial (\partial m_{\alpha ,t,1}(\theta )/\partial \sigma )}{\partial \lambda _t(\theta ^*)}\right| _{\lambda _t(\theta ^*)=\bar{\lambda }_t(\theta ^*)}\left| \lambda _t(\theta ^*)-{\tilde{\lambda }}_t(\theta ^*)\right| \\&\le \left( \left( \frac{3(1+\alpha )^2}{\sigma ^2}+2(1+\alpha )\right) \right. \\&\quad \left. \bar{\lambda }_t(\theta ^*)+\frac{2(1+\alpha )^2}{\sigma }+\frac{5(1+\alpha )^2}{\sigma ^2}\right) \\&\quad V\rho ^t,\\ \left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\right|&\le \left| \frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right| _{\lambda _t(\theta ^*)=\bar{\lambda }_t(\theta ^*)}\left| \lambda _t(\theta ^*)-\tilde{\lambda }_t(\theta ^*)\right| \\&\le \left( 2(1+\alpha )(\alpha +2)+\frac{(1+\alpha )(\alpha +2)}{\bar{\lambda }_t(\theta ^*)}\right) V\rho ^t,\\ \left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \sigma }-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \sigma }\right|&\le \left| \frac{\partial (\partial m_{\alpha ,t,2}(\theta )/\partial \sigma )}{\partial \lambda _t(\theta ^*)}\right| _{\lambda _t(\theta ^*)=\bar{\lambda }_t(\theta ^*)}\left| \lambda _t(\theta ^*)-\tilde{\lambda }_t(\theta ^*)\right| \\&\le \left( \frac{2\alpha ^2}{\sigma \bar{\lambda }_t(\theta ^*)}X_t^2+\left( \alpha +\frac{3\alpha ^2}{\sigma }+\frac{\alpha ^2}{\sigma ^2\bar{\lambda }_t(\theta ^*)}\right) X_t\right. \\&\quad \left. +\left( \alpha +\frac{\alpha ^2}{\sigma }\right) \bar{\lambda }_t(\theta ^*) +\frac{\alpha ^2}{\sigma ^2}\right) V\rho ^t,\\ \left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\right|&\le \left| \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right| _{\lambda _t(\theta ^*)=\bar{\lambda }_t(\theta ^*)}\left| \lambda _t(\theta ^*)-\tilde{\lambda }_t(\theta ^*)\right| \\&\le \left( \frac{\alpha ^2}{\bar{\lambda }_t^2(\theta ^*)}X_t^2+\left( \frac{\alpha }{\bar{\lambda }_t(\theta ^*)}+\frac{\alpha }{\bar{\lambda }_t^2(\theta ^*)}\right) X_t+\alpha ^2+\alpha \right) \\&\quad \quad V\rho ^t. \end{aligned}$$

Lemma A.5

Under \((\mathrm{A}1){-}(\mathrm{A}6)\), we have

$$\begin{aligned} E\left( \sup _{\theta \in \Theta }\left\| \dfrac{\partial ^2l_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^{\top }}\right\| \right)<\infty ~~and~~ E\left( \sup _{\theta \in \Theta }\left\| \dfrac{\partial l_{\alpha ,t}(\theta )}{\partial \theta }\dfrac{\partial l_{\alpha ,t}(\theta )}{\partial \theta ^{\top }} \right\| \right) <\infty . \end{aligned}$$

Proof

For the first part, it suffices to show that \(E\left( \sup \limits _{\theta \in \Theta }\left\| \dfrac{\partial ^2m_{\alpha ,t,1}(\theta )}{\partial \theta \partial \theta ^{\top }}\right\| \right) <\infty \)  and   \(E\left( \sup \limits _{\theta \in \Theta }\left\| \dfrac{\partial ^2m_{\alpha ,t,2}(\theta )}{\partial \theta \partial \theta ^{\top }}\right\| \right) <\infty \). By using (A2) and Lemma A, we have

$$\begin{aligned} \sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,1}^2(\theta )}{\partial \sigma ^2}\right|&\le 2(1+\alpha )^2\left( \frac{1}{\delta _{L}}+\frac{2}{\delta _{L}^2}\right) \sup _{\theta ^*\in \Theta ^*}\lambda _t^2(\theta ^*)\\&\quad +\,\frac{(1+\alpha )(2\alpha +7)}{\delta _{L}^2}\sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{(1+\alpha )(2\alpha +7)}{\delta _{L}^3}\\&\quad +\,\frac{4(1+\alpha )^2}{\delta _{L}^4}+\frac{(1+\alpha )(2\alpha +4)}{\delta _{L}^5},\\ \sup _{\theta \in \Theta }\left\| \frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\|&\le \sup _{\theta \in \Theta }\left| \frac{\partial ^2m_{\alpha ,t,1}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}\right\| \\&\quad +\,\sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\| \\&\le \left( 2(1+\alpha )(\alpha +2)+\frac{(1+\alpha )(\alpha +2)}{\delta _{L}}\right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}\right\| \\&+2(1+\alpha )\sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\| ,\\ \sup _{\theta \in \Theta }\left\| \frac{\partial ^2 m_{\alpha ,t,1}(\theta )}{\partial \sigma \partial \theta ^*}\right\|&\le \sup _{\theta \in \Theta }\left| \frac{\partial (\partial m_{\alpha ,t,1}(\theta )/\partial \sigma )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \\&\le \left( \left( \frac{3(1+\alpha )^2}{\delta _{L}^2}+2(1+\alpha )\right) \sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{2(1+\alpha )^2}{\delta _{L}}\right. \\&\quad +\left. \,\frac{5(1+\alpha )^2}{\delta _{L}^2}\right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| ,\\ \sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,2}^2(\theta )}{\partial \sigma ^2}\right|&\le \frac{4\alpha ^2}{\delta _{L}^2}X_t^2+\frac{6\alpha }{\delta _{L}^2}X_t+\frac{2\alpha ^2}{\delta _{L}^2}\sup _{\theta ^*\in \Theta ^*}\lambda _t^2(\theta ^*)\\&\quad +\,\frac{2\alpha }{\delta _{L}^2}\sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{3\alpha }{\delta _{L}^3}+\frac{2\alpha ^2}{\delta _{L}^4}+\frac{\alpha }{\delta _{L}^5},\\ \sup _{\theta \in \Theta }\left\| \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\|&\le \sup _{\theta \in \Theta }\left| \frac{\partial ^2m_{\alpha ,t,2}(\theta )}{\partial \lambda _t^2(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}\right\| \\&\quad +\,\sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\| \\&\le \left( \frac{\alpha ^2}{\delta _{L}^2}X_t^2+\left( \frac{\alpha }{\delta _{L}}+\frac{\alpha }{\delta _{L}^2}\right) X_t+\alpha ^2+\alpha \right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\frac{\partial \lambda _t(\theta ^*)}{\partial {\theta ^*}^{\top }}\right\| \\&+\left( \frac{\alpha }{\delta _{L}}X_t+\alpha \right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial ^2\lambda _t(\theta ^*)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\right\| ,\\ \sup _{\theta \in \Theta }\left\| \frac{\partial ^2 m_{\alpha ,t,2}(\theta )}{\partial \sigma \partial \theta ^*}\right\|&\le \sup _{\theta \in \Theta }\left| \frac{\partial (\partial m_{\alpha ,t,1}(\theta )/\partial \sigma )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \\&\le \left( \frac{2\alpha ^2}{\delta _{L}^2}X_t^2+\left( \alpha +\frac{3\alpha ^2}{\delta _{L}}+\frac{\alpha ^2}{\delta _{L}^3}\right) X_t\right. \\&\quad +\,\left. \left( \alpha +\frac{\alpha ^2}{\delta _{L}}\right) \sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{\alpha ^2}{\delta _{L}^2}\right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| . \end{aligned}$$

Hence, the first part of the lemma is verified by the Cauchy–Schwarz inequality, (A3), (A6), and the fact that \(X_t\) has finite moments of any order. For the second part, it is sufficient to show that

$$\begin{aligned} E\left( \sup _{\theta \in \Theta }\left\| \dfrac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta }\dfrac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta ^{\top }}\right\| \right)<\infty , ~~E\left( \sup _{\theta \in \Theta }\left\| \dfrac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta }\dfrac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta ^{\top }}\right\| \right) <\infty \end{aligned}$$

and

$$\begin{aligned} E\left( \sup _{\theta \in \Theta }\left\| \dfrac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta }\dfrac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta ^{\top }}\right\| \right) <\infty . \end{aligned}$$

In a similar way to the proof of the first part, from (A2), (P1)–(P3) and Lemma lemma4A.4A, we can show that

$$\begin{aligned} \sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \sigma }\right|&\le (1+\alpha )\left( 1+\frac{1}{\delta _{L}}\right) \sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{2(1+\alpha )}{\delta _{L}^2},\\ \sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta ^*}\right\|&\le \left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \le 2(1+\alpha )\sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| ,\\ \sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \sigma }\right|&\le \frac{2\alpha }{\delta _{L}}X_t+\frac{\alpha }{\delta _{L}}\sup _{\theta ^*\in \Theta ^*}\lambda _t(\theta ^*)+\frac{\alpha }{\delta _{L}^2},\\ \sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta ^*}\right\|&\le \left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\right| \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \\&\le \left( \frac{\alpha }{\delta _{L}}X_t+\alpha \right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| . \end{aligned}$$

\(\square \)

The product of every pair of above has finite expectations because of the Cauchy–Schwarz inequality, (A3), (A6) and the existence of any order moments of \(X_t\), the second part is validated. Thus the lemma is established.

Lemma A.6

Under \((\mathrm{A}1){-}(\mathrm{A}7)\), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial l_{\alpha ,t}(\theta )}{\partial \theta }-\frac{\partial \tilde{l}_{\alpha ,t}(\theta )}{\partial \theta }\right\| \xrightarrow {a.s.}0~~as~~n \rightarrow \infty . \end{aligned}$$

Proof

It suffices to show that

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta }-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \theta ^{\top }}\right\| \xrightarrow {a.s.}0 \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta }-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \theta ^{\top }} \right\| \xrightarrow {a.s.}0~~as~~n\rightarrow \infty . \end{aligned}$$

From Lemma lemma4A.4A, we have

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \sigma }-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \sigma }\right| \\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\left( \left( \frac{3(1+\alpha )^2}{\delta _{L}^2}+2(1+\alpha )\right) \sup _{\theta ^*\in \Theta ^*}\bar{\lambda }_t(\theta ^*)\right. \\&\qquad \left. +\frac{2(1+\alpha )^2}{\delta _{L}}+\frac{5(1+\alpha )^2}{\delta _{L}^2}\right) V\rho ^t,\\&\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \theta }-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \theta }\right\| \\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \left( \frac{\partial m_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}-\frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\right) \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \\&\qquad +\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial \tilde{m}_{\alpha ,t,1}(\theta )}{\partial \lambda _t(\theta ^*)}\left( \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}-\frac{\partial \tilde{\lambda }_t(\theta ^*)}{\partial \theta ^*}\right) \right\| \\&\quad \le \left( \left( 2(1+\alpha )(\alpha +2)+\frac{(1+\alpha )(\alpha +2)}{\delta _{L}}\right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \right. \\&\qquad \left. +2(1+\alpha )\right) V\rho ^t,\\&\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \sigma }-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \sigma }\right| \\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\left( \frac{2\alpha ^2}{\delta _{L}^2}X_t^2+\left( \alpha +\frac{3\alpha ^2}{\delta _{L}}+\frac{\alpha ^2}{\delta _{L}^3}\right) X_t\right. \\&\qquad \left. +\,\left( \alpha +\frac{\alpha ^2}{\delta _{L}}\right) \sup _{\theta ^*\in \Theta ^*}\bar{\lambda }_t(\theta ^*)+\frac{\alpha ^2}{\delta _{L}^2}\right) V\rho ^t,\\&\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \theta }-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \theta }\right\| \\&\quad \le \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \left( \frac{\partial m_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}-\frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\right) \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \\&\qquad +\,\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\sup _{\theta \in \Theta }\left\| \frac{\partial \tilde{m}_{\alpha ,t,2}(\theta )}{\partial \lambda _t(\theta ^*)}\left( \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}-\frac{\partial \tilde{\lambda }_t(\theta ^*)}{\partial \theta ^*}\right) \right\| \\&\quad \le \left( \left( \frac{\alpha ^2}{\delta _{L}^2}X_t^2+\left( \frac{\alpha }{\delta _{L}}+\frac{\alpha }{\delta _{L}^2}\right) X_t+\alpha ^2+\alpha \right) \sup _{\theta ^*\in \Theta ^*}\left\| \frac{\partial \lambda _t(\theta ^*)}{\partial \theta ^*}\right\| \right. \\&\qquad \left. +\frac{\alpha }{\delta _{L}}X_t+\alpha \right) V\rho ^t. \end{aligned}$$

\(\square \)

Using the fact that \(\bar{\lambda }_t(\theta ^*)\le \lambda _t(\theta ^*)+ |\lambda _t(\theta ^*)-\tilde{\lambda }_t(\theta ^*)|\) and Lemma 6 of Kim and Lee [18], the right hand side of the above inequality converges to 0 exponentially fast a.s., then the lemma is established. We can see Straumann and Mikosch [27] and Cui and Zheng [9] for details of the concept and properties of exponentially fast a.s. convergence.

Lemma A.7

Suppose that

$$\begin{aligned} \hat{\theta }_{\alpha ,n}^{H}=\arg \min _{\theta \in \Theta }H_{\alpha ,n}(\theta ), \end{aligned}$$

and conditions \((\mathrm{A}1){-}(\mathrm{A}8)\) hold. Then, we have

$$\begin{aligned} \hat{\theta }_{\alpha ,n}^{H}\xrightarrow {a.s.}\theta _0 \end{aligned}$$

and

$$\begin{aligned} \sqrt{n}(\hat{\theta }_{\alpha ,n}^{H}-\theta _0)\xrightarrow {d} N(0, J_\alpha ^{-1}K_{\alpha }{J_\alpha }^{-\top })~~as~~ n\rightarrow \infty . \end{aligned}$$

Proof

As in the proof of Theorem 3.4, we can see \(\sup _{\theta \in \Theta }\left| \frac{1}{n}\sum _{t=1}^{n}l_{\alpha ,t}(\theta )-E l_{\alpha ,t}(\theta )\right| \) converges to 0 a.s., and \(E l_{\alpha ,t}(\theta )\) has a unique minimum at \(\theta _0\) by Lemma lemma3A.3, then the first part of the lemma is validated. \(\square \)

Now, we verify the second part of the lemma. From Taylor’s expansion, we obtain

$$\begin{aligned} 0=\frac{1}{\sqrt{n}}\sum _{t=1}^n\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta } +\frac{1}{n}\sum _{t=1}^n\frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }} \sqrt{n}(\hat{\theta }_{\alpha ,n}^{H}-\theta _0), \end{aligned}$$

where \(\bar{\theta }_{\alpha ,n}\) is an intermediate point between \(\hat{\theta }_{\alpha ,n}^{H}\) and \(\theta _0\). First, we show that

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^n\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta }\xrightarrow {d} N(0, K_{\alpha }). \end{aligned}$$
(E1)

Note that for \(v={(v_1,v_2^{\top })}^{\top }\in \mathbb {R}\times \mathbb {R}^d\),

$$\begin{aligned} E\left( v^{\top }\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta }\bigg |\mathcal {F}_{t-1}\right)= & {} v_1E\left( \frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \sigma }\bigg |\mathcal {F}_{t-1}\right) \\&+\,v_2^{\top }\frac{\partial \lambda _t(\theta _0^*)}{\partial \theta ^*}E\left( \frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \lambda _t(\theta ^*)}\bigg |\mathcal {F}_{t-1}\right) =0 \end{aligned}$$

and

$$\begin{aligned}E\left( v^{\top }\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta }\right) ^2=v^{\top }E\left( \frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta }\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta ^{\top }}\right) v<\infty , \end{aligned}$$

due to the second part of Lemma lemma5A.5A. Hence, using the central limit theorem in Billingsley [3], we obtain

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^nv^{\top }\frac{\partial l_{\alpha ,t}(\theta _0)}{\partial \theta }\xrightarrow {d} N(0, v^{\top }K_{\alpha }v), \end{aligned}$$

which asserts (E1). Now, we show that

$$\begin{aligned} -\frac{1}{n}\frac{\partial ^2l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}\xrightarrow {a.s} J_{\alpha }. \end{aligned}$$
(E2)

In view of the first part of Lemma lemma5A.5, \(J_{\alpha }\) is finite. Further, since

$$\begin{aligned}&v^{\top }(-J_{\alpha })v =(v_1~v_2^{\top }) \begin{pmatrix} &{}E\dfrac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \sigma ^2} &{}E\dfrac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \sigma \partial {\theta ^*}^{\top }}\\ &{}E\dfrac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \theta ^*\partial \sigma } &{}E\dfrac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \theta ^*\partial {\theta ^*}^{\top }}\\ \end{pmatrix} \left( {\begin{array}{c}v_1\\ v_2\end{array}}\right) \\&\quad =v_1\left( \frac{1+\alpha }{\sigma _0^4}\sum _{x=0}^{\infty } P_{\theta _0}^{1+\alpha }(x|\mathcal {F}_{t-1}) K_{\alpha ,t,1}^2(x;\theta _0)\right) v_1 -2v_2^{\top }\frac{\partial \lambda _t(\theta _0^*)}{\partial \theta ^*}\\&\qquad \left( \frac{1+\alpha }{\sigma _0^2}\sum _{x=0}^{\infty } P_{\theta _0}^{1+\alpha }(x|\mathcal {F}_{t-1}) K_{\alpha ,t,1}^2(x;\theta _0)\frac{1}{\sigma _0\lambda _t(\theta _0^*)+1}\left( \frac{x}{\lambda _t(\theta _0^*)}-1\right) \right) v_1\\&\qquad +v_2^{\top }\frac{\partial \lambda _t(\theta _0^*)}{\partial \theta ^*}\\&\qquad \left( (1+\alpha )\sum _{x=0}^{\infty } P_{\theta _0}^{1+\alpha }(x|\mathcal {F}_{t-1})\frac{1}{\sigma _0\lambda _t(\theta _0^*)+1}\left( \frac{x}{\lambda _t(\theta _0^*)}-1\right) ^2\right) \left( v_2^{\top }\frac{\partial \lambda _t(\theta _0^*)}{\partial \theta ^*}\right) ^{\top }\\&\quad >(1+\alpha )\sum _{x=0}^{\infty } P_{\theta _0}^{1+\alpha }(x|\mathcal {F}_{t-1})\\&\qquad \left( v_1\frac{1}{\sigma _0^2} K_{\alpha ,t,1}(x;\theta _0)-v_2^{\top }\left( \dfrac{\partial \lambda _t(\theta _0^*)}{\partial \theta ^*}\right) \frac{1}{\sigma _0\lambda _t(\theta _0^*)+1}\left( \frac{x}{\lambda _t(\theta _0^*)}-1\right) \right) ^{2}\ge 0, \end{aligned}$$

\(J_{\alpha }\) is non-singular with (A8). Note that

$$\begin{aligned}&\left| \left| \frac{1}{n}\sum _{t=1}^{n} \frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}- E\left( \frac{\partial ^2 l_t(\theta _0)}{\partial \theta \partial \theta ^{\top }}\right) \right| \right| \\&\quad \le \left| \left| \frac{1}{n}\sum _{t=1}^{n} \frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}- E\left( \frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}\right) \right| \right| \\&\qquad +\left| \left| E\left( \frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}\right) -E\left( \frac{\partial ^2 l_t(\theta _0)}{\partial \theta \partial \theta ^{\top }}\right) \right| \right| \\&\quad \le \sup _{\theta \in \Theta }\left| \left| \frac{1}{n}\sum _{t=1}^{n} \frac{\partial ^2 l_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^{\top }}- E\left( \frac{\partial ^2 l_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^{\top }}\right) \right| \right| \\&\qquad +\left| \left| E\left( \frac{\partial ^2 l_{\alpha ,t}(\bar{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}\right) -E\left( \frac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^{\top }}\right) \right| \right| . \end{aligned}$$

The stationarity and ergodicity of \(\partial ^2 l_{\alpha ,t}(\theta )/\partial \theta \partial \theta ^{\top }\) and the first part of Lemma lemma5A.5A imply that the first term in the last inequality converges to 0 a.s., moreover, the second term of the last inequality is no more than

$$\begin{aligned} E\left( \sup _{\Vert \theta -\theta _0\Vert \le \Vert \hat{\theta }_{\alpha ,n}^{H} -\theta _0\Vert } \left\| \frac{\partial ^2 l_{\alpha ,t}(\theta )}{\partial \theta \partial \theta ^{\top }}-\frac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^{\top }}\right\| \right) , \end{aligned}$$
(E3)

then by the dominated convergence theorem, we can see that (E3) decays to 0. So that (E2) is verified. Therefore, from (E1) and (E2), the second part of the lemma is established.

Proof of Theorem 3.5

From Taylor’s expansion, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^n\frac{\partial l_{\alpha ,t}(\hat{\theta }_{\alpha ,n}^{H})}{\partial \theta }-\frac{1}{\sqrt{n}} \sum _{t=1}^n\frac{\partial l_{\alpha ,t}(\hat{\theta }_{\alpha ,n})}{\partial \theta } =\frac{1}{n}\sum _{t=1}^n\frac{\partial ^2 l_{\alpha ,t}(\tilde{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }} \sqrt{n}(\hat{\theta }_{\alpha ,n}^{H}-\hat{\theta }_{\alpha ,n}), \end{aligned}$$

where \(\tilde{\theta }_{\alpha ,n}\) is an intermediate point between \(\hat{\theta }_{\alpha ,n}^{H}\) and \(\hat{\theta }_{\alpha ,n}\). Furthermore, from the facts that \(n^{-1}\sum _{t=1}^{n}\partial l_{\alpha ,t}(\hat{\theta }_{\alpha ,n}^{H})/\partial \theta ^{\top }=0\) and \(n^{-1}\sum _{t=1}^{n}\partial \tilde{l}_{\alpha ,t}(\hat{\theta }_{\alpha ,n})/\partial \theta ^{\top }=0\), we obtain

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum _{t=1}^n\frac{\partial \tilde{l}_{\alpha ,t}(\hat{\theta }_{\alpha ,n})}{\partial \theta }-\frac{1}{\sqrt{n}}\sum _{t=1}^n\frac{\partial l_{\alpha ,t}(\hat{\theta }_{\alpha ,n})}{\partial \theta }\nonumber \\&\quad =\frac{1}{n}\sum _{t=1}^n\frac{\partial ^2 l_{\alpha ,t}(\tilde{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }} \sqrt{n}(\hat{\theta }_{\alpha ,n}^{H}-\hat{\theta }_{\alpha ,n}). \end{aligned}$$

The left hand side of the above equation converges to 0 a.s. by Lemma lemma6A.6A, and we can show that \(\frac{1}{n}\sum \nolimits _{t=1}^{n}\frac{\partial ^2 l_{\alpha ,t}(\tilde{\theta }_{\alpha ,n})}{\partial \theta \partial \theta ^{\top }}\) converges to \(E\left( \frac{\partial ^2 l_{\alpha ,t}(\theta _0)}{\partial \theta \partial \theta ^{\top }}\right) \) a.s. in a similar manner as in the proof of Lemma lemma7A.7A. Therefore, the theorem is established by Lemma lemma7A.7A. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Zhu, F. Minimum Density Power Divergence Estimator for Negative Binomial Integer-Valued GARCH Models. Commun. Math. Stat. 10, 233–261 (2022). https://doi.org/10.1007/s40304-020-00221-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00221-8

Keywords

Mathematics Subject Classification

Navigation